簡易檢索 / 詳目顯示

研究生: 王歆彤
Wang, Xin-Tong
論文名稱: 生物科技產業微生物發酵之製造排程與設備管理數位轉型之研究
A Study on Digital Transformation of Manufacturing Scheduling and Equipment Management for Microbial Fermentation Processes in the Biotechnology Industry
指導教授: 楊大和
Yang, Taho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 131
中文關鍵詞: 連續型生產數位轉型智慧維修資訊流圖Microsoft 365資料視覺化
外文關鍵詞: Continuous Flow, Digital Transformation, Smart Maintenance, Information Stream Mapping, Microsoft 365, Data visualization
相關次數: 點閱:79下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連續型生產存在兩個主要關鍵生產特性:原料物質轉化過程存在不確定性與高度依賴反應槽設備的可靠度,此兩點特性影響整體產出。本研究之研究對象為微生物發酵量產專業企業,該案例所屬之生物科技產業背景隸屬於連續型生產。微生物發酵為生產核心主軸,其別於一般生產流程中零件組合的方式,微生物細胞在不同反應槽中的一系列變化視為連續製程中的不同生產線,其中不僅涉及微生物的生長變化,還包括管理設備以維持有效的生產條件。驅動生產為其製程的生產排程,而主要生產設備的可靠度則關鍵決定生產力。同時鑒於案例現況無執行任何排程且設備管理皆為紙本人工作業之狀況下衍生諸多問題,因此本研究聚焦改善於排程以及設備維修管理之兩議題。
    數位化浪潮推動企業實施數位轉型,在此背景下智慧維修(Smart Maintenance)的概念應運而生,其旨在運用現代數位技術,優化設備維修管理。本研究針對排程與設備管理,透過資訊流圖(Information Stream Mapping, iSM)方法辨識資訊流中得以改善的機會。本研究運用Microsoft Excel Visual Basic for Application (VBA)建構易操作排程系統以及透過Microsoft 365®中Microsoft Power Apps®和Microsoft SharePoint®建構智慧化設備管理平台,並實踐數位系統之應用,助於企業達成數位轉型,同時從中提升管理精度並優化資訊流程。
    導入排程系統,以改善物料需求計劃(Material Requirements Planning, MRP)系統因其固定的計算方式而難以適應此產業製造特性牽涉複雜的化學反應變化。同時iSM之五項指標皆有所改善,且排程作業資訊處理流程時間降低了88%。
    導入智慧化設備管理平台,使得實現即時資訊呈現、有效追蹤設備維修進度、資料收集與雲端儲存運算,促進資訊視覺化及整合管理,達成智慧維修,奠定改善設備可靠度的良好基礎。同時iSM之五項指標皆有所改善,且設備管理資訊處理流程時間大幅減少97%。

    Driven by the trend of digitization and Industry 4.0 advancements, enterprises are embracing digital transformation and Smart Maintenance to stay competitive. However, many companies face challenges in initiating digital transformations effectively.
    The current work flow of this study case is all manual work, which leads to many problems. Therefore, this study employs Information Stream Mapping (iSM) to analyze information flow, identifying areas in scheduling and equipment management ripe for improvement. Subsequently, two digital systems are developed to aid digital transformation and enhance production efficiency:a highly flexible digital scheduling system using Microsoft Excel VBA, caters to the dynamic changes in Microbial Fermentation Processes, and a Smart Equipment Management Platform within Microsoft 365, incorporates an Equipment Maintenance Management App utilizing Microsoft Power Apps and Microsoft SharePoint. Data analysis through Microsoft Power BI provides data visualization and valuable insights for continuous improvement.
    Results reveal significant enhancements across iSM performance indicators, leading to remarkable reductions in scheduling process times by 88% and 97% for scheduling and equipment management, respectively. Real-time information presentation, efficient maintenance tracking, and data-driven decision-making capabilities are achieved through these digital systems, at the same time, Smart Maintenance practices.
    In conclusion, this study addresses critical production challenges by introducing digital solutions to enhance operational efficiency, standardize procedures, and optimize information flow. Leveraging digital tools for real-time visualization and data management, it sets a robust foundation for continuous improvement and strategic decision-making.

    目錄 vii 表目錄 x 圖目錄 xi 1 緒論 1 1.1研究背景與動機 1 1.2研究目的 4 1.3研究流程 5 1.4研究架構 6 2 文獻探討 8 2.1連續型生產 8 2.1.1生產特性 9 2.1.2生產排程 10 2.2數位轉型 11 2.3智慧維修 13 2.4資訊流分析 15 2.5Microsoft 365 17 2.5.1Microsoft Power Apps 18 2.5.2Microsoft SharePoint 19 2.5.3Microsoft Power BI 20 2.6小結 22 3 研究方法 23 3.1Information Stream Mapping 24 3.1.1iSM績效指標 24 3.1.2iSM架構 28 3.2排程系統 32 3.2.1系統建構流程 32 3.2.2排程主系統架構 33 3.2.3子介面架構 35 3.2.4Power BI工時分析流程架構 35 3.2.5標準工時表架構 36 3.3智慧化設備管理平台 37 3.3.1系統建構流程 38 3.3.2SharePoint架構 39 3.3.3行動設備維修管理APP架構 40 3.3.4Power BI設備指標分析流程架構 43 4 產業背景與案例說明 46 4.1生物科技產業背景 46 4.2案例公司背景說明 48 4.3案例公司之生產流程 49 4.4作業流程現況分析 53 4.4.1.排程現況分析 54 4.4.2.排程現況資訊流圖 57 4.4.3.設備管理現況分析 61 4.4.4.設備管理現況資訊流圖 62 4.5問題描述 65 5 實證分析 67 5.1 排程系統實踐 67 5.1.1排程系統功能介紹 69 5.1.2排程系統操作流程 71 5.1.3工時分析 72 5.1.4效益分析 75 5.2智慧化設備管理平台實踐 83 5.2.1系統運作流程 83 5.2.2資料庫建構 84 5.2.3行動設備維修管理APP建構 87 5.2.4行動設備維修管理APP操作流程 90 5.2.5設備指標分析 93 5.2.6效益分析 96 6 結論與建議 104 6.1研究結論 104 6.2未來建議 105 參考文獻 106 附錄A:排程系統詳細操作流程 110

    詹文男、周維忠、李震華(2020),《數位轉型力》(初版),商周出版,台北。
    簡禎富、吳佳虹、李家岩、林春成、范書愷、徐昕煒、翁紹仁、曹譽鐘、許嘉裕、陳子立、曾元琦、曾明朗、楊大和、謝宛霖、蘇國瑋(2022),《工業工程與管理導論》,前程文化出版社,新北市。
    楊大和、李兆華(2021),數位轉型是持續改善的過程—自働生產管理環為例,工業工程雜誌,取自: https://sites.google.com/ciie.org.tw/column220901 (2024/06/09 取得)
    Microsoft(2023),《運用Microsoft 365 執行資料收集、分析應用服務》,Microsoft Taiwan,台北。
    經濟部工業局(2023),《2023生技產業白皮書》,經濟部,台北,取自:https://www.biopharm.org.tw/images/2023/2023%20Biotechnology-Industry-in-Taiwan.pdf (2023/12/29取得)。
    案例公司官網,2024,取自: https://www.geneferm.com/ (2024/4/22取得)
    Bokrantz, J., Skoogh, A., Berlin, C., Wuest, T., & Stahre, J. (2020). Smart Maintenance: a research agenda for industrial maintenance management. International Journal of Production Economics, 224, 107547.
    Bokrantz, J., Skoogh, A., Berlin, C., & Stahre, J. (2017). Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030. International Journal of Production Economics, 191, 154-169.
    Crama, Y., Pochet, Y., & Wera, Y. (2001). A discussion of production planning approaches in the process industry. Center for Operations Research discussion paper CORE 2001/42, UCL, Belgium
    Fransoo, J. C., & Rutten, W. G. (1994). A typology of production control situations in process industries. International Journal of Operations & Production Management, 14(12), 47-57.
    Foresti, R., Rossi, S., Magnani, M., Bianco, C. G. L., & Delmonte, N. (2020). Smart society and artificial intelligence: big data scheduling and the global standard method applied to smart maintenance. Engineering, 6(7), 835-846.
    Ferrari, A., & Russo, M. (2016), Introducing Microsoft Power BI, Microsoft Press, USA.
    Georgiadis, G. P., Elekidis, A. P., & Georgiadis, M. C. (2019). Optimization-based scheduling for the process industries: from theory to real-life industrial applications. Processes, 7(7), 438.
    Gong, C., & Ribiere, V. (2021). Developing a unified definition of digital transformation. Technovation, 102, 102217.
    Hayes, R. H., & Wheelwright, S. C. (1979). Link manufacturing process and product life cycles. Harvard Business Review, 133-140.
    Hopp, W. J., & Spearman, M. L. (2011), Factory physics (3 ed), Long Grove, USA.
    Hillier, S. (2007), Microsoft SharePoint, New York, USA.
    Jasiulewicz-Kaczmarek, M., Legutko, S., & Kluk, P. (2020). Maintenance 4.0 technologies–new opportunities for sustainability driven maintenance. Management and Production Engineering Review, 11.
    Koh, S. C. L., Saad, S. M., & Jones, M. H. (2002). Uncertainty under MRP-planned manufacture: review and categorization. International Journal of Production Research, 40(10), 2399-2421.
    Keskin, I., & Soykan, G. (2023). Reliability, availability, and life-cycle cost (LCC) analysis of combined cooling, heating and power (CCHP) integration to data centers considering electricity and cooling supplies. Energy Conversion and Management, 291, 117254.
    Kumar, N. H., Manjunath, C., John, R. P., Chand, R. P., Madhusudhana, S., & Venkatesha, B. K. (2022). Reliability, availability and maintainability study of 6.5 cubic meters shovel and 60 tone dumper in a surface limestone mine. Materials Today: Proceedings, 54, 199-204.
    Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4-5), 715-727.
    Lu, Y., Wang, H., & Xu, X. (2019). ManuService ontology: A product data model for service-oriented business interactions in a cloud manufacturing environment. Journal of Intelligent Manufacturing, 30, 317-334.
    Lehtola, N., 2023, Power Apps-sovelluksen kehitys työseurantaan, Available: https://www.theseus.fi/bitstream/handle/10024/793611/Lehtola_Niko.pdf?sequence=2 (2024/01/17取得)
    Liker, J., Frank, J., Li, J., & Khan, Y., 2024, Lean and Digital Manufacturing: Putting People at the Center, Available: https://kcftech.com/lean-and-digital-manufacturing/ (2024/05/02取得)
    Meudt, T., Metternich, J., & Abele, E. (2017). Value stream mapping 4.0: Holistic examination of value stream and information logistics in production. Cirp Annals, 66(1), 413-416.
    Mercurio, R., & Merrill, B. (2021), Welcome to Microsoft 365. In Beginning microsoft 365 collaboration apps: working in the Microsoft Cloud (pp. 3-27). Berkeley, USA.
    Malik, S. (2010), Microsoft Sharepoint 2010: building solutions for Sharepoint 2010, New York, USA.
    Microsoft, 2024, What is SharePoint, Available: https://support.microsoft.com/en-us/office/what-is-sharepoint-97b915e6-651b-43b2-827d-fb25777f446f (2024/04/29取得)
    Microsoft, 2023a, What is Power Apps ?, Available: https://learn.microsoft.com/en-us/power-apps/powerapps-overview (2023/11/20取得)
    Microsoft, 2023b, What is Power BI ?, Available: https://learn.microsoft.com/en-us/power-bi/fundamentals/power-bi-overview (2023/11/21取得)
    Microsoft, 2023c, Formula reference - Power Apps, Available: https://learn.microsoft.com/en-us/power-platform/power-fx/formula-reference (2023/12/25取得)
    Microsoft, 2023d, DAX function reference, Available: https://learn.microsoft.com/en-us/dax/dax-function-reference (2023/12/25取得)
    Microsoft, 2023e, Tutorial: Create your own measures in Power BI Desktop, Available: https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-tutorial-create-measures (2023/12/25取得)
    Muchiri, P., & Pintelon, L. (2008). Performance measurement using overall equipment effectiveness (OEE): literature review and practical application discussion. International Journal of Production Research, 46(13), 3517-3535.
    Negri, E., Pandhare, V., Cattaneo, L., Singh, J., Macchi, M., & Lee, J. (2021). Field-synchronized Digital Twin framework for production scheduling with uncertainty. Journal of Intelligent Manufacturing, 32(4), 1207-1228.
    Poór, P., & Basl, J. (2020). “Machinery maintenance model for evaluating and increasing maintenance, repairs and operations within Industry 4.0 concept,” 2020 3rd International Conference on Mechanical Manufacturing and Industrial Engineering 26-28, August, Tokyo, Japan.
    Roh, P., Kunz, A., & Wegener, K. (2019). Information stream mapping: Mapping, analysing and improving the efficiency of information streams in manufacturing value streams. CIRP Journal of Manufacturing Science and Technology, 25, 1-13.
    Rybaric, R. (2023), Microsoft Power Platform Enterprise Architecture: Design tailor-made solutions for architects and decision makers to meet complex business requirements, Birmingham, UK.
    Soltanali, H., Khojastehpour, M., & Farinha, J. T. (2021). Measuring the production performance indicators for food processing industry. Measurement, 173, 108394.
    Schwertner, K. (2017). Digital transformation of business. Trakia Journal of Sciences, 15(1), 388-393.
    Saihi, A., Ben-Daya, M., & As' ad, R. (2022). A Survey of the Underlying Success Factors of Maintenance Digital Transformation. IFAC-PapersOnLine, 55(10), 2944-2949.
    Tortorella, G. L., Fogliatto, F. S., Cauchick-Miguel, P. A., Kurnia, S., & Jurburg, D. (2021). Integration of industry 4.0 technologies into total productive maintenance practices. International Journal of Production Economics, 240, 108224.
    Yarbrough, A. C., Harris, G. A., & Purdy, G. T. (2022). Improving the flow of data and information in manufacturing. Manufacturing Letters, 32, 1-4.
    Zhou, J., Li, P., Zhou, Y., Wang, B., Zang, J., & Meng, L. (2018). Toward new-generation intelligent manufacturing. Engineering, 4(1), 11-20.
    Zio, E. (2009). Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety, 94(2), 125-141.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE