| 研究生: |
鄧羽雯 Teng, Yu-Wen |
|---|---|
| 論文名稱: |
預防維修保養於石化工業熔融指數生產排程 Preventive Maintenance for Petrochemical MFI-Production Scheduling |
| 指導教授: |
王宏鍇
Wang, Hung-Kai |
| 共同指導教授: |
李家岩
Lee, Chia-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 生產排程 、預防保養 、預防保養排程 、石化工業 |
| 外文關鍵詞: | Production Scheduling, Preventive maintenance, Preventive maintenance Scheduling, Petrochemical industry |
| 相關次數: | 點閱:48 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石油化學工業,簡稱石化工業(petrochemical industry),以石油或天然氣為主要原料,經過化學反應,加工生產出各種化工產品的行業,屬於連續性生產模式。在石化工業中,有許多化學特性以及特殊生產限制會影響生產排程的表現與可行性,另外在實務上,石化工業可能因為管線堵塞,零件故障,化學反應不佳…等眾多原因導致產線停擺,且突發的故障無法預期,維修時間變異也較大,如維修時間會隨管線堵塞程度而有所差異,且在石化工業中的保養策略為一年一次並由公司決定為年底進行保養,在這一年中,產線若突然停擺,則採取緊急維修(reactive maintenance, RM)的策略,在維修保養結束或故障維修結束後需重排排程,因此對於制定石化工業的預防保養(preventive maintenance, PM)計畫建議以及開發一個有效率的生產排程是需要的。
本研究根據石化產業中工程經驗參考檔案開發三種啟發式演算法產生可行的化工廠生產排程,工程經驗參考檔案記錄石化工廠的生產特性與限制,而熔融指數在化工廠中表示加工時的流動性,因此熔融指數在化工廠排程中為主要參考的項目,在考慮化工廠目標以及限制的情況下,有三個關鍵生產議題為滿足客戶交期需求, 減少產能損失,增加生產良率。接著制訂四種石化工業保養策略,模擬隨機故障發生並使用三種啟發式演算法重排排程,目標為考慮保養維修成本,與產能損失下最小化總成本,並維持產線生產穩定(與換線換模次數有關),最終根據此多目標問題給出預防維修保養與使用的啟發式演算法建議。
Petrochemical industry refers to the industry that uses petroleum or natural gas as the main raw materials, chemical reaction, to process and produce a variety of chemical products through chemical reactions and belongs to the continuous production. In the petrochemical industry, there are many chemical characteristics and special production constraints that affect the performance and feasibility of production scheduling. In addition, the maintenance strategy in the petrochemical industry is once a year and the company decides to carry out maintenance at the end of the year, if the production line suddenly stops, the reactive maintenance (RM) will be carried out at the other time. However, after the maintenance or RM is completed, the schedule is required to be reschedule. Therefore, this study aims to find preventive maintenance (PM) plan for the petrochemical industry and propose scheduling algorithms to generate the feasible schedule based on engineering experience reference files which records the production characteristics and constraints of petrochemical plants. Melt Flow Index (MFI) represents fluidity which the main reference item in petrochemical factory scheduling. There are three critical production issues, meet customer delivery requirements, reduce capacity loss, and increase production yields. Then formulate four maintenance strategies, simulate the occurrence of random failures and use three heuristic algorithms to reschedule. The goal is to minimize the total cost (i.e. PM cost, RM cost, and cost of capacity loss) and maintain the stability of the production line (depending on the transitional products). Finally, recommend the combination of PM strategy and proposed heuristic algorithm based on this multi-objective problem.
Aghaee, A., Aghaee, M., Fathi, M. R., Shoa'bin, S., & Sobhani, S. M. (2020). A novel fuzzy hybrid multi-criteria decision-making approach for evaluating maintenance strategies in petrochemical industry. Journal of Quality in Maintenance Engineering.
Ao, Y., Zhang, H., & Wang, C. (2019). Research of an integrated decision model for production scheduling and maintenance planning with economic objective. Computers & Industrial Engineering, 137, 106092.
Arbiza, M. J., Bonfill, A., Guillén, G., Mele, F. D., Espuna, A., & Puigjaner, L. (2008). Metaheuristic multiobjective optimisation approach for the scheduling of multiproduct batch chemical plants. Journal of Cleaner Production, 16(2), 233-244.
Bargaoui, H., Driss, O. B., & Ghédira, K. (2016). Minimizing makespan in multi-factory flow shop problem using a chemical reaction metaheuristic. Paper presented at the 2016 IEEE Congress on Evolutionary Computation (CEC).
Bayoumi, A., & McCaslin, R. (2017). Internet of things–a predictive maintenance tool for general machinery, petrochemicals and water treatment. In Advanced Technologies for Sustainable Systems (pp. 137-146): Springer.
Blömer, F., & Günther, H.-O. (1998). Scheduling of a multi-product batch process in the chemical industry. Computers in industry, 36(3), 245-259.
Borumand, A., & Beheshtinia, M. A. (2018). A developed genetic algorithm for solving the multi-objective supply chain scheduling problem. Kybernetes.
Burkard, R. E., Fortuna, T., & Hurkens, C. A. (2002). Makespan minimization for chemical batch processes using non-uniform time grids. Computers & Chemical Engineering, 26(9), 1321-1332.
Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143-157.
Gallimore, K. F., & Penlesky, R. J. (1988). A framework for developing maintenance strategies. Production and Inventory Management Journal, 29(1), 16.
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & operations research, 13(5), 533-549.
Graves, S. C. (1981). A review of production scheduling. Operations research, 29(4), 646-675.
Ho, Chieh-Ying , (2020). Multi-objective Genetic Algorithm and Reinforcement Learning for Petrochemical MFI-Production Scheduling.
Hill, A., Cornelissens, T., & Sörensen, K. (2016). Efficient multi-product multi-BOM batch scheduling for a petrochemical blending plant with a shared pipeline network. Computers & Chemical Engineering, 84, 493-506.
Hu, H., Cheng, G., Li, Y., & Tang, Y. (2009). Risk-based maintenance strategy and its applications in a petrochemical reforming reaction system. Journal of Loss Prevention in the Process Industries, 22(4), 392-397.
Hwang, B.-G., Krishnankutty, P., Zhu, L., Caldas, C. H., Shounak, A., & Mulva, S. (2020). Improving labour productivity in process construction maintenance and shutdown/turnaround projects. International Journal of Construction Management, 20(7), 822-836.
Kaplanoğlu, V. (2016). An object-oriented approach for multi-objective flexible job-shop scheduling problem. Expert Systems with Applications, 45, 71-84.
Kolus, A., El-Khalifa, A., Al-Turki, U. M., & Duffuaa, S. O. (2020). An integrated mathematical model for production scheduling and preventive maintenance planning. International Journal of Quality & Reliability Management.
Kondili, E., Pantelides, C. C., & Sargent, R. W. (1993). A general algorithm for short-term scheduling of batch operations—I. MILP formulation. Computers & Chemical Engineering, 17(2), 211-227.
Lee, Chia-Yen, and Chien, C.-F. (2020). Pitfalls and Protocols of Data Science in Manufacturing Practice. Accepted in Journal of Intelligent Manufacturing.
Lin, Feng-Chi, (2020). Heuristic Algorithm of Production Scheduling with Outsourcing Uncertainty in Fastener Manufacturer.
Lei, D. (2009). Multi-objective production scheduling: a survey. The International Journal of Advanced Manufacturing Technology, 43(9), 926-938.
Liao, W., Zhang, X., & Jiang, M. (2017). Multi-objective group scheduling optimization integrated with preventive maintenance. Engineering Optimization, 49(11), 1890-1904.
Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238.
Mao, J.-y., Pan, Q.-k., Miao, Z.-h., & Gao, L. (2021). An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance. Expert Systems with Applications, 169, 114495.
Mobley, R. K. (2002). An introduction to predictive maintenance: Elsevier.
Nguyen, D., & Bagajewicz, M. (2010). Optimization of preventive maintenance in chemical process plants. Industrial & engineering chemistry research, 49(9), 4329-4339.
Pargar, F., Kauppila, O., & Kujala, J. (2017). Integrated scheduling of preventive maintenance and renewal projects for multi-unit systems with grouping and balancing. Computers & Industrial Engineering, 110, 43-58.
Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive maintenance: Systems, purposes and approaches. arXiv preprint arXiv:1912.07383.
Suursalu, S. (2017). Predictive maintenance using machine learning methods in petrochemical refineries.
Valdez-Navarro, Y. I., & Ricardez-Sandoval, L. A. (2019). A novel back-off algorithm for integration of scheduling and control of batch processes under uncertainty. Industrial & engineering chemistry research, 58(48), 22064-22083.
Wang, H., Yan, Q., & Zhang, S. (2021). Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system using a reinforcement learning approach. Advanced Engineering Informatics, 49, 101339.
Wang, Y., Cheng, G., Hu, H., & Wu, W. (2012). Development of a risk-based maintenance strategy using FMEA for a continuous catalytic reforming plant. Journal of Loss Prevention in the Process Industries, 25(6), 958-965.
Zhong, S., Pantelous, A. A., Beer, M., & Zhou, J. (2018). Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms. Mechanical Systems and Signal Processing, 104, 347-369.