| 研究生: |
蔡欣翰 Tsai, Shin-Han |
|---|---|
| 論文名稱: |
粉末前處理對鈦酸鍶燒結行為之影響 The effects of powder pretreatment on the sintering behavior of strontium titanate |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 鈦酸鍶 、前處理 、燒結 |
| 外文關鍵詞: | SrTiO3, pretreatment, sintering |
| 相關次數: | 點閱:58 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鍶 (SrTiO3) 是一種具有鈣鈦礦型的晶體結構的電子功能陶瓷材料,其介電常數高、介電損耗低且熱穩定性高,因此用途十分廣泛,最常被應用在電容材料 (MLCC);近年SrTiO3亦被發現有超導、光觸媒之應用及可作為燃料電池極板,因此SrTiO3是一種值得深入研究的陶瓷材料,但作為塊材之應用上有一缺點為難以燒結緻密。
因此為提升 SrTiO3 塊材之相對密度,除了以新穎的燒結手法來提升塊材密度之外,原始粉末也是影響塊材密度的重要因素,一般常以摻雜或以奈米級的前驅粉末為起始原料來提升塊材之密度。
以水熱法120 ℃/6 h 合成的奈米級SrTiO3粉末,含有乙二醇之聚合物等雜質且易成凝聚體。為減少此等雜質及奈米粉體凝聚現象,本研究檢討超音波震盪處理及pH值的控制,對SrTiO3粉末燒結行為之影響。實驗顯示超音波震盪處理並離心清洗至pH=8.5再以600 ℃煆燒5小時之粉體,經成形後在Ar-5 % H2的氣氛下加熱至1300 ℃持溫4小時,所得塊材之相對密度93.56 %,晶粒大小約為600 nm~1 μm;結晶相均為單一的鈦酸鍶相。
La-doped SrTiO3 nano powders were synthesized by hydrothermal method. However, there are impurities, including organics and nitrate, remaining on the surface of powders which inhibit the sintering of powders. In order to improve the densification of SrTiO3 powders, powder pretreatment was used in this study. Ultra-sonication is good for reducing agglomeration and helpful for particle dispersion. Agglomeration of SrTiO3 powders caused by organics and nitrate can be reduced by ultra-sonication and centrifugal washing until pH=8.5. Calcination can remove the residual organics and nitrate. In this study, SrTiO3 powders were pretreated by ultra-sonication centrifugal washing to pH=8.5 and calcined at 600 ℃ for 5 h, then sintered at 1300 ℃ for 4 h in Ar-5 % H2. The relative density of sintered bulk is 93.56 %, and the grain size is 600~1000 nm.
1. J. F. Schooley, W. R. Hosler, and M. L. Cohen, Superconductivity in Semiconducting SrTiO3. Physical Review Letters, 1964. 12(17): p. 474-475.
2. N. P. Bhagya, Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nanoparticles: Kinetic and isotherm studies. Journal of Asian Ceramic Societies, 2016. 4(1): p. 68-74.
3. T. Kimijima, Solvothermal synthesis of SrTiO3 nanoparticles precisely controlled in surface crystal planes and their photocatalytic activity. Applied Catalysis B: Environmental, 2014. 144: p. 462-467.
4. C. D. Savaniu and J. T. S. Irvine, La-doped SrTiO3 as anode material for IT-SOFC. Solid State Ionics, 2011. 192(1): p. 491-493.
5. C. D. Savaniu and J. T. S. Irvine, Reduction studies and evaluation of surface modified A-site deficient La-doped SrTiO3 as anode material for IT-SOFCs. Journal of Materials Chemistry, 2009. 19(43): p. 8119.
6. H. Muta, K. Kurosaki, and S. Yamanaka, Thermoelectric properties of doped BaTiO3–SrTiO3 solid solution. Journal of Alloys and Compounds, 2004. 368(1-2): p. 22-24.
7. H. Muta, K. Kurosaki, and S. Yamanaka, Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3. Journal of Alloys and Compounds, 2005. 392(1-2): p. 306-309.
8. F. Schrey, P. K. Gallagher, F. V. Dimarcello, Preparation of semiconducting titanates by chemical methods. Journal of the American Ceramic Society, 1963. 46: p. 359-365.
9. A. Kikuchi, N. Okinaka, and T. Akiyama, A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering. Scripta Materialia, 2010. 63(4): p. 407-410.
10. A. Karaphun, S. Hunpratub, and E. Swatsitang, Effect of annealing on magnetic properties of Fe-doped SrTiO3 nanopowders prepared by hydrothermal method. Microelectronic Engineering, 2014. 126: p. 42-48.
11. J. Luo and P. A. Maggard, Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3. Advanced Materials, 2006. 18(4): p. 514-517.
12. F. Zhang, Hydrothermal Synthesis and Characterization of Nb5+-Doped SrTiO3 Powders. Advanced Materials Research, 2013. 821-822: p. 913-916.
13. K. A. Lehuta and K. R. Kittilstved, Speciation of Cr(iii) in intermediate phases during the sol–gel processing of Cr-doped SrTiO3 powders. Journal of Materials Chemistry A, 2014. 2(17): p. 6138-6145.
14. H. Xu, Preparation of shape controlled SrTiO3 crystallites by sol–gel-hydrothermal method. Journal of Crystal Growth, 2006. 292(1): p. 159-164.
15. M. Ito, and T. Matsuda, Thermoelectric properties of non-doped and Y-doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing. Journal of Alloys and Compounds, 2009. 477(1-2): p. 473-477.
16. M. Nygren, SPS Processing of Nano-Structured Ceramics. Journal of Iron and Steel Research, International, 2007. 14(5): p. 99-103.
17. K. S. Liu and N. L. Lin, Enhanced Densification of SrTiO3 Perovskite Ceramics. Applications of Ferroelectrics, 1991: p. 261-264.
18. C. N. George, Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties. Journal of Alloys and Compounds, 2009. 486(1-2): p. 711-715.
19. 陳映璉, 鑭摻雜鈦酸鍶之粉末製備、燒結行為及其塊材熱電性質之研究 = Powder preparation, sintering behavior and thermoelectric properties of La-doped strontium titanate. 國立成功大學碩士學位論文2015.
20. D. M. Rowe, CRC handbook of thermoelectrics. CRC Press, Boca Raton, 701. 1995.
21. O. V. M. N. N. F. Fedorov, V. A. Saltykova, M. V. Chistyakova and Z.N. Khim Russ, European Journal of Inorganic Chemistry, 1979. 24: p. 649.
22. S. R. Murchison, Hydrothermal Reactions for Materials Science and Engineering. Elsevier Applied Science, London, 1989.
23. J. B. Hannay, On the Artificial Formation of the Diamond. Proceedings of the Royal Society of London, 1880. 30: p. 178.
24. C. C. H-Housten, James O. Eckert Jr., B. L.Gersten, M. M. Lencka, and R. E. Riman, Kinetics and Mechanism of Hydrothermal Synethesis of Barium Titanate. Journal of the American Ceramic Society, 1996. 79: p. 2929.
25. K. Byrappa and M. Yoshimura, Handbook of hydrothermal technology. 2nd ed. William Andrew, Oxford, xv, 779. 2013.
26. W. Zhu, C. C. Wang, S. A. Akbar, and R. Asiale, Fast-sintering of Hydrothermally Synthesized BaTiO3 Powders and their Dielectric Properties. Journal of Materials Science, 1997. 32: p. 4303.
27. U. Sulaeman, S. Yin, and T. Sato, Solvothermal Synthesis and Photocatalytic Properties of Nitrogen-Doped SrTiO3 Nanoparticles. Journal of Nanomaterials, 2010. 2010: p. 1-6.
28. G. H. Zheng, Improving the Thermoelectric Properties of Sr0.9La0.1TiO3 by Ag Addition. Journal of Low Temperature Physics, 2013. 174(3-4): p. 128-135.
29. R. Akita, Microwave-Assisted Hydrothermal Synthesis and Photocatalytic Properties of Cr and La-Codoped SrTiO3 Photocatalyst. Key Engineering Materials, 2014. 608: p. 147-152.
30. R. F. Gonçalves, Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method. Ceramics International, 2015. 41(3): p. 3549-3554.
31. S. Sōmiya, Hydrothermal reactions for material science and engineering : an overview of research in Japan. Springer Netherlands, London, xvi, 505. 1989.
32. S. L. Fu, S. Y. Cheng, and C. C. Wei, Sintering of SrTiO3 with Li2CO3 Addition. Ceramics International, 1989. 15: p. 231.
33. T. Okuda, Large thermoelectric response of metallic perovskites:Sr1−xLaxTiO3 (0<x<0.1). Physical Review B, 2001. 63. 113104
34. P. F. Johnson and S. G. Cho, Evolution of the microstructure of undoped and Nb-doped SrTiO3. Journal of Materials Science, 1994. 29: p. 4866.
35. I. N. Lin and K. S. Liu, Enhanced Densification of SrTiO3 Perovskite Ceramics. Applications of Ferroelectrics, 1995: p. 261-264.
36. Q. X. Fu, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3. Journal of the European Ceramic Society, 2008. 28(4): p. 811-820.
37. F. Gao, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency. Journal of Power Sources, 2008. 185(1): p. 26-31.
38. L. Amaral, A. M. R. Senos, and P. M. Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics. Materials Research Bulletin, 2009. 44(2): p. 263-270.
39. K. Maca, V. Pouchly, and Z. Shen, Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics. Integrated Ferroelectrics, 2008. 99(1): p. 114-124.
40. M. N. Rahaman, Ceramic processing and sintering. Materials engineering, M. Dekker, New York, xi, 770. 1995.
41. J. S. Reed, Principles of ceramics processing. 2nd ed. Wiley & Sons, New York, xxii, 658. 1995.
42. http://zh.wikipedia.org/zh-tw/%E9%92%9B%E9%85% B8%E9%94% B6.
43. M. Kosmulski, pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal Colloid Interface Science, 2009. 337(2): p. 439-448.
44. http://www.chemguide.co.uk/atoms/properties/atradius.html.
45. 曾為隆, 施劭儒, 表面改質鈦酸鍶粉體在不同溫度下對燒結行為之影響, presented at the 2016 ceramics, National Pintung University of Science and Technology, 2016
46. http://www.materialsnet.com.tw/DocView.aspx?id=9102
校內:2021-09-02公開