| 研究生: |
陳映兆 Chen, Ying-Jhao |
|---|---|
| 論文名稱: |
利用3D列印硼矽玻璃粉末摻合聚乳酸之複合材料的製程研究 3D Printing Manufacturing for Glass Parts Using Composite Filament Made with Pyrex Borosilicate Glass Powder and Polylactic Acid |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 3D列印 、聚乳酸 、硼矽酸玻璃 、複合線材 、高溫燒結 |
| 外文關鍵詞: | 3D printing, polylactic acid, borosilicate glass, composite filament, high temperature sintering |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所使用之線材為硼矽酸玻璃粉末摻合聚乳酸(PLA)之複合材料(Pyrex Borosilicate Glass Filament™),其組合質量比例為玻璃粉末73 %及聚乳酸27 %,線材密度為1.5g / cc。使用繪圖軟體(SolidWorks)繪製所需測試零件設計圖,轉存成STL文件,載入3D列印機(Ultimaker2+)製出所要使用的零件,再放入高溫燒結爐加熱,燒結過程使零件內聚乳酸成分裂解,進而提煉出純粹硼矽酸玻璃,再進行各項實驗測試,實驗分成兩大項,分別為表面形貌觀察及機械性質測量差異。藉由觀察燒結前後零件特性變化,就表面型態及機械性質量測比較,包含SEM觀測、EDS分析、燒結前後物體外觀改變、熱性能、硬度、耐磨耗等。從實驗結果得知,本製程玻璃零件經過燒結後,組合成分改變,其導熱性、熱擴散性及耐磨耗等性能均獲得明顯提升,並且在製作過程中,因為零件長時間置於高溫環境中,導致玻璃內部方石英晶體成核,使其熱及機械性能優於傳統製程手藝成品。此製作過程不同於利用傳統玻璃窯製手藝,需經過配料、熔製、成型、退火及整修等五個步驟煉製,製造過程簡單、成本低廉,能以低成本及高效率過程來取得玻璃零件有效地減輕市面上繁雜玻璃製程及高額成本問題,達到最高的效益。
In this research, the filament is a composite material of borosilicate glass powder mixed with polylactic acid (PLA). The combined mass ratio is 73% glass powder and 27% polylactic acid, and the filament density is 1.5g /cc. The production process is to use a 3D printing machine to produce the accessories to be used, and then put them into a high-temperature sintering furnace for heating. The sintering process cracks the polylactic acid component in the filament to extract pure borosilicate glass, and then conducts various experimental tests. The two major items are the surface morphology observation and the difference in mechanical properties measurement. By observing the changes in the characteristics of parts before and after sintering, the surface morphology and mechanical quality are measured and compared, including SEM observation, EDS analysis, object expansion and mass change before and after sintering, thermal conductivity, specific heat, hardness, wear resistance, etc. It can be seen from the experimental results that after the parts are sintered in this process, the composition of the parts is changed, and their thermal conductivity, thermal diffusivity and wear resistance are significantly improved. During the production process, the parts are placed in a high temperature environment for a long time, which leads to the nucleation of cristobalite crystals inside the glass, making its thermal and mechanical properties superior to those of traditional craft products.
1. S. Ashley, “Rapid Prototyping Systems”, Mechanical Engineering, Volume 113, Issue 4, 1991, Pages 34.
2. D.T Pham, R.S Gault, “A Comparison of Rapid Prototyping Technologies”, International Journal of Machine Tools and Manufacture, Volume 38, Issue 10–11, 1998, Pages 1257-1287.
3. J. Flowers, M. Moniz, “Rapid Prototyping in Technology”, Technology Teacher, Volume 62, Issue 3, 2002, Pages 7-11.
4. K.V. Wong, A. Hernandez, “A Review of Additive Manufacturing”, International Scholarly Research Notices, 2012.
5. O.S. Carneiro, A.F. Silva, R. Gomes, “Fused Deposition Modeling with Polypropylene”, Materials & Design, Volume 83, 2015, Pages 768-776.
6. O. Ayeni, “Sintering and Characterizations of 3D Printed Bronze Metal Filament”, Master thesis, Department of Mechanical and Energy Engineering, The University of Purdue, Indianapolis, Indiana 2018.
7. M.H. Too, K.F. Leong, C.K. Chua, Z.H. Du, S.F. Yang, C.M. Cheah, , S.L. Ho, “Investigation of 3D Non-random Porous Structures by Fused Deposition Modelling”, The International Journal of Advanced Manufacturing Technology, Volume 19, Issue 3, 2002, Pages 217-223.
8. The Virtual Foundry 公司主頁:https://www.thevirtualfoundry.com/(still available on May 7 2022)
9. 莊惠如、林助傑,聚乳酸的發展與應用。化學,第69卷4期,2011年,第291-301頁。
10. R.E. Drumright, P.R. Gruber, D.E. Henton, “Polylactic Acid Technology”, Advanced Materials, Volume 12, Issue 23, 2000, Pages 1841-1846.
11. 李華嚴,聚乳酸/聚碳酸酯合膠研究。東海大學化學工程與材料工程研究所。碩士論文,2014年。
12. S. Singare, Q. Lian, W.P. Wang, J. Wang, Y. Liu, D. Li, B. Lu, “Rapid Prototyping Assisted Surgery Planning and Custom Implant Design”, Rapid Prototyping Journal, Volume 83, Issue 1, 2009, Pages 19-23.
13. M.M.R.A. Lima, R.C.C. Monteiro, M.P.F. Graça, M.G.F.D Silva, “Structural, Electrical and Thermal Properties of Borosilicate Glass–alumina Composites” Journal of Alloys and Compounds, Volume 538, 2012, Pages 66-72.
14. A.A.E. Kheshen, M.F. Zawrah, “Sinterability, Microstructure and Properties of Glass/ceramic Composites”, Ceramics International, Volume 29, Issue 3, 2003, Pages 251-257.
15. H.R. Fernandes, D.U. Tulyaganov, A. Goel, M.J. Ribeiro, M.J. Pascual, J.M.F. Ferreira, “Effect of Al2O3 and K2O Content on Structure, Properties and Devitrification of Glasses in the Li2O–SiO2 System”, Journal of the European Ceramic Society, Volume 30, Issue 10, 2010, Pages 2017-2030.
16. Ultimaker 公司主頁:https://ultimaker.com.(still available on May 7 2022)
17. M.M Lima, R Monteiro, “Characterisation and Thermal Behaviour of A Borosilicate Glass”, Thermochimica Acta, Volume 373, Issue 1, 2001, Pages 69-74.
18.F. Klocke, A.M. Clung, and C. Ader, “Direct Laser Sintering of Borosilicate Glass”, 2004 International Solid Freeform Fabrication Symposium, 2004.
19. 國立成功大學微奈米科技研究中心,奈米三維量測儀及奈米薄膜材料試驗機(Nano indenterXP)儀器操作手冊,2005。
20 C.A. Schuh, “Nanoindentation Studies of Materials”, Materials Today, Volume 9, Issue 5, 2006, Pages 32-40.
21. H.B. Peng, M.L. Sun, K.J. Yang, H. Chen, D. Yang, W. Yuan, L. Chen, B.H. Duan, T.S. Wang, “Effect of Irradiation on Hardness of Borosilicate Glass”, Journal of Non-Crystalline Solids, Volume 443, Issue 1, 2016, Pages 143-147.
22.A.K. Bhattacharya, W.D. Nix, “Analysis of Elastic and Plastic Deformation Associated with Indentation Testing of Thin Films on Substrates”, International Journal of Solids and Structures, Volume 24, Issue 12, 1988, Pages 1287-1298.
23. 溫詩鑄、黃平,摩擦學原理(第五版),清華大學出版社,北京,2018。
24. A.I. Kassis, “The Amazing World of Auger Electrons”, International Journal of Radiation Biology, Volume 80, Issue11-12, 2004, Pages 789-803.
25.The NETZSCH公司主頁:https://analyzing-testing.netzsch.com/ (still available on May 7 2022)
26. A. Salazar, “On Thermal Diffusivity”, European Journal of Physics, Volume 24, Issue 4, 2003, Pages 351.
27.K. Pietrak, T.S. Wiśniewski, “A Review of Models for Effective Thermal Conductivity of Composite Materials”, Journal of Power Technologies, Volume 95, Issue 1, 2015, Pages 14-24.
28.S. Ghosh,A. Ghosh,J Mukherjee,R Banerje, “Improved Thermal Properties of Borosilicate Glass Composite Containing Single Walled Carbon Nanotube Bundles”, RSC Advances, Volume 5, Issue 63,2015, Pages 51116-51121.
29. J. Laureto, J. Tomasi, J.A. King, J.M. Pearce, “Thermal Properties of 3D Printed Polylactic Acid-metal Composites”, Progress in Additive Manufacturing, Volume 2, Issue 1, 2017, Pages 57-71.
30. N. Bouras, M.A. Madjoubi, M. Kolli, S. Benterki, M. Hamidouche, “Thermal and Mechanical Characterization of Borosilicate Glass”, Physics Procedia, Volume 2, Issue 3, 2009, Pages 1135-1140.
31. M.F. Zawrah, E.M.A. Hamzawy, “Effect of Cristobalite Formation on Sinterability, Microstructure and Properties of Glass/ceramic Composites”, Ceramics International, Volume 28, Issue 2, 2002, Pages 123-130.
32.P. Malchow, K.E. Johanns, D. Möncke S, Korte-Kerzel, L. Wondraczek K. Durst, “Composition and Cooling-rate Dependence of Plastic Deformation, Densification, and Cracking in Sodium Borosilicate Glasses During Pyramidal Indentation”, Journal of Non-Crystalline Solids, Volume 419, Issue 1, 2015, Pages 97-109.
33. .J.M. Lonergan, C. Lonergan, J. Silverstein, P. Cholsaipant, J.M. Cloy, “Thermal Properties of Sodium Borosilicate Glasses as a Function of Sulfur Content”, Journal of the American Ceramic Society, Volume 103, Issue 6, 2020, Pages 3610-3619.
34.L.F. Johnson, D.P.H. Hasselman, E. Minford, “Thermal Diffusivity and Conductivity of a Carbon Fibre-reinforced Borosilicate Glass”, Journal of Materials Science, Volume 22, Issue 9, 1987, Pages 3111-3117.
35. U. Hammerschmidt, M. Abid, “The Thermal Diffusivity of Glass Sieves”, International Journal of Thermophysics, Volume 42, Issue 4, 2021, Pages 1-29.
36. The MakeItFrom 主頁:\https://www.makeitfrom.com/material-properties/Low-Expansion-Borosilicate-Glass-ASTM-E438-Type-I-Class-A/(still available on May 7 2022)
37. W. Schnelle, J. Engelhardt, E. Gmelin, “Specific Heat Capacity of Apiezon N High Vacuum Grease and of Duran Borosilicate Glass”, Cryogenics, Volume 39, Issue 3, 1999, Pages 271-275.
38. The Bibby Sterilin公司主頁:www.bibby-sterilin.com.(still available on May 7 2022)