簡易檢索 / 詳目顯示

研究生: 朮建平
Chu, Chien-Ping
論文名稱: 應用網站日誌探勘於政府入口網站精進評估之研究
An Evaluation of Improving Government Portal Sites by Web Usage Mining
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 凝聚式階層分群參與度滿意度網頁使用探勘
外文關鍵詞: agglomerative hierarchical clustering, participation level, satisfaction level, web usage mining
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 政府網站營運可參考由行政院發展委員會所制定的作業規範,各項指標為經營網站的指導原則,然而,符合原則不等於民眾期望的資訊品質,網站管理者僅能從點閱數得到熱門網頁排名,因此,本研究蒐集改版前、後民眾點擊的資料,使用網頁探勘資料前處理流程,提出滿意度及參與度二種探勘面向,滿意度指標有網頁平均停留時間(T)、點擊數(C)、冗擊(R),而參與程度是瀏覽主題網頁數量,比較改版前、後不同面向與程度後,再應用瀏覽規則樣式、重要網頁排名與連結分群之探勘方法,以評估網站精進前、後服務品質之良窳;本網站精進後因簡約的改版原則,最低參與度民眾的數量下降8%,非常滿意與滿意程度的人數小幅上揚,改版後較高滿意度的閱聽者偏好的資訊類型與低參與度的使用者感興趣的網頁類型相同;為了提升使用者的滿意度,網站應設立交通相關資訊之關鍵性連結。

    Government organizations have principles in designing web sites for people to get information. However, the web sites following the principles may not provide necessary information for people. The objective of this study is to collect browsing data for the original and new version of a government web site for evaluating the satisfaction and participation levels of users. The browsing data of a session is transformed into average time staying in a page, the number of clicks, and the number of redundant clicks to be the indicators of satisfaction level. The participation level of a session is measured by the number of browsed pages of the government web site. The results show that after the web site is redesigned, the aggregate percentage for the satisfaction levels in good and very good increases and the lowest participation level drops about 8%. For the new web site, the users with the highest satisfaction level seem to have the same preference on the information provided by the government web site as the ones with the lowest participation level, and traffic information should be critical in increasing satisfaction level.

    摘要 I 誌謝 VI 目錄 VII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 4 1.4 研究架構 5 第二章 文獻探討 6 2.1 政府入口網站概況 6 2.2 網頁探勘與網站日誌 10 2.3 網頁探勘方法 15 第三章 研究方法 20 3.1 環境與精進概況 20 3.2 方法流程 24 3.3 範圍限制 26 3.4 前處理程序與探勘面向 27 3.5 應用網頁探勘方法 32 第四章 實證分析 35 4.1 指標分析 35 4.2 探勘工具 39 4.3 結果比較與解釋 40 4.4 管理介面創建 48 第五章 結論與建議 49 5.1 結論 49 5.2 應用建議 50 5.3 未來展望 50 參考文獻 52 附錄一 網站營運績效檢核指標 56 附錄二 滿意度探勘原始結果與比較表 58 附錄三 參與度探勘原始結果與比較表 67

    尹相志. (2004). 資料採礦 網際網路應用與顧客價值管理: 維科圖書有限公司.
    江明修. (2000). 第三部門經營策略與社會參與: 智勝文化事業有限公司.
    行政院研究發展考核委員會. (民95). 電子化政府報告書(93~94年度): 行政院研考會.
    行政院研究發展考核委員會. (民100). 100年度電子化政府報告書: 國家發展委員會(原行政院研考會).
    行政院研究發展考核委員會. (民103). 政府網站建置及營運作業參考指引.
    周思伶. (民98). 政府網站服務品質指標建構之研究. 國立政治大學, 台北市.
    國立政治大學公共行政學系. (民98). 電子治理指標. from http://www.teg.org.tw/web_zh/indicator/indicator.do
    張礽川. (民93). 具時間特性之網頁瀏覽行為探勘與預測機制. 成功大學.
    陳祥. (民92). 電子化政府整合型入口網站服務功能之研究 (行政院研究發展考核委員會 ed.). 台灣: 行政院研究發展考核委員會.
    鄭自隆. (民90). 政府網站網路傳播之研究 (行政院研究發展考核委員會 ed.). 台灣: 行政院研究發展考核委員會.
    蕭乃沂. (民96). 政府網站功能民主化: 行政院研考會.
    戴廷芳. (2014). 2020年全球資料量將成長至44ZB. Retrieved 2014/5/1, from http://www.ithome.com.tw/article/87190
    謝寶媛, & 周秉貞. (民92). 以顧客導向觀點評估政府網站之資訊架構. 圖書與資訊學刊(46), 36-89.
    Akerkar, R., & Lingras, P. (2008). Building an Intelligent Web: Theory and Practice: Jones & Bartlett Learning.
    Baker, D. L. (2009). Advancing E-Government performance in the United States through enhanced usability benchmarks. Government Information Quarterly, 26(1), 82-88.
    Barber, D. (2012). Bayesian Reasoning and Machine Learning: Cambridge University Press.
    Bing, L. (2011). Web Data Mining : Exploring Hyperlinks, Contents, and Usage Data: Springer-Verlag New York, Inc.
    Borges, J., & Levene, M. (2005). Generating dynamic higher-order Markov models in web usage mining Knowledge Discovery in Databases: PKDD 2005 (Vol. 3721, pp. 34-45). Porto, Portugal: Springer Berlin Heidelberg.
    Cao, L. B., Zhang, H. F., Zhao, Y. C., Luo, D., & Zhang, C. Q. (2011). Combined Mining: Discovering Informative Knowledge in Complex Data. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 41(3), 699-712.
    Chen, M. S., Park, J. S., & Yu, P. S. (1998). Efficient data mining for path traversal patterns. IEEE Transactions on Knowledge and Data Engineering, 10(2), 209-221.
    Coenen, F., & Leng, P. (2007). The effect of threshold values on association rule based classification accuracy. Data & Knowledge Engineering, 60(2), 345-360.
    Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: information and pattern discovery on the World Wide Web. Proceedings of the International Conference on Tools with Artificial Intelligence, 558-567, Newport Beach. IEEE Press.
    Elling, S., Lentz, L., de Jong, M., & van den Bergh, H. (2012). Measuring the quality of governmental websites in a controlled versus an online setting with the 'Website Evaluation Questionnaire'. Government Information Quarterly, 29(3), 383-393.
    Facca, F. M., & Lanzi, P. L. (2005). Mining interesting knowledge from weblogs: a survey. Data & Knowledge Engineering, 53(3), 225-241.
    Hintoglu, A. A., Saygin, Y., Benbernou, S., & Hacid, M. S. (2005). Privacy preserving data mining services on the web. Trust, Privacy, and Security in Digital Business, 3592, 246-255.
    Hong, G., & Lee, J. (2005). Designing an intelligent web information system of government based on web mining. In L. Wang & Y. Jin (Eds.), Fuzzy Systems and Knowledge Discovery (Vol. 3614, pp. 1071-1078): Springer Berlin Heidelberg.
    Huang, Y. M., Kuo, Y. H., Chen, J. N., & Jeng, Y. L. (2006). NP-miner: A real-time recommendation algorithm by using web usage mining. Knowledge-Based Systems, 19(4), 272-286.
    Hung, Y. S., Chen, K. L. B., Yang, C. T., & Deng, G. F. (2013). Web usage mining for analysing elder self-care behavior patterns. Expert Systems with Applications, 40(2), 775-783.
    Kantardzic, M. (2002). Data Mining: Concepts Models Methods and Algorithms: John Wiley & Sons, Inc.
    Karkin, N., & Janssen, M. (2014). Evaluating websites from a public value perspective: A review of Turkish local government websites. International Journal of Information Management, 34(3), 351-363.
    Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604-632.
    Kosala, R., & Blockeel, H. (2000). Web mining research: a survey. SIGKDD Explorations Newsletter 2(1), 1-15.
    Liu, B. (2006). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-Centric Systems and Applications) (2nd ed.): Springer, 2011.
    Liu, H., & Kešelj, V. (2007). Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users’ future requests. Data & Knowledge Engineering, 61(2), 304-330.
    Lu, L., Dunham, M., & Meng, Y. (2006). Mining significant usage patterns from clickstream data. Advances in Web Mining and Web Usage Analysis, 4198, 1-17.
    Markov, Z., & Larose, D. T. (2007). Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage: Wiley.
    Meier, K. J., & O'Toole, L. J. (2011). Comparing public and private management: theoretical expectations. Journal of Public Administration Research and Theory, 21, I283-I299.
    Mobasher, B., Berendt, B., & Spiliopoulou, M. (2001). Knowledge Discovery and Data Mining (KDD) for Personalization [PKDD 2001 Tutorial]. PDF posted to http://www.slideshare.net/ajayohri/kdd-for-personalization
    Munk, M., Kapusta, J., Svec, P., & Turcani, M. (2010). Data advance preparation factors affecting results of sequence rule analysis in web log mining. E & M Ekonomie a Management, 13(4), 143-160.
    Ortega, J. L., & Aguillo, I. (2010). Differences between web sessions according to the origin of their visits. Journal of Informetrics, 4(3), 331-337.
    Park, S., Suresh, N. C., & Jeong, B. K. (2008). Sequence-based clustering for web usage mining: A new experimental framework and ANN-enhanced K-means algorithm. Data & Knowledge Engineering, 65(3), 512-543.
    Petridou, S., Koutsonikola, V., Vakali, A., & Papadimitriou, G. (2006). A divergence-oriented approach for web users clustering. In M. Gavrilova, O. Gervasi, V. Kumar, C. J. K. Tan, D. Taniar, A. Laganá, Y. Mun & H. Choo (Eds.), Computational Science and Its Applications - ICCSA 2006 (Vol. 3981, pp. 1229-1238): Springer Berlin Heidelberg.
    Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106.
    Schwester, R. W. (2009). Examining the Barriers to e-Government Adoption. Electronic Journal of e-Government, 7(1), 113 - 122.
    Spiliopoulou, M., Pohle, C., & Faulstich, L. C. (2000). Improving the effectiveness of a web site with web usage mining. Web Usage Analysis and User Profiling, 1836, 142-162.
    Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web usage mining: discovery and applications of usage patterns from web data. SIGKDD Explorations Newsletter 1(2), 12-23.
    Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining (1st ed.): Addison-Wesley.
    Vincent, D. B., Jean-Loup, G., Renaud, L., & Etienne, L. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    無法下載圖示 校內:2026-12-31公開
    校外:2026-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE