簡易檢索 / 詳目顯示

研究生: 謝佳妮
Hsieh, Chia-Ni
論文名稱: 不同經濟環境下貨櫃船減排之探討與效益評估
Benefit Assessment of Emissions Reduction for Container Vessels in Different Economic Conditions
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 作業基礎模型貨櫃船碳交易二氧化碳排放船舶減速
外文關鍵詞: activity-based model, containership, carbon trading, emissions, slow- steaming
相關次數: 點閱:107下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以作業基礎模型(activity-based model),計算四種貨櫃船型Feeder、Panamax、Post-Panamax、New- Panamax之航次別油耗和排放強度,再引入三種減速情境(減速10%、20%、30%) 評估環境效益,接著以CATCH模型評估成本效益。並選取減速成本最低之兩船型,探討其在不同經濟、運價與油價情境下之經濟效益,並加入碳交易之碳價,將二氧化碳排放之外部成本內部化,納入船舶排放成本中。研究結果顯示: (1) Feeder、Panamax、Post-Panamax 及New-Panamax的碳排放強度,每延噸海浬分別為14.25克、10.56克、9.57克及9.10克,此結果顯示大型船舶較小型船舶具環境效益。(2)排放強度最高之 Feeder及最低之New-Panamax每延噸海浬二氧化碳排放量,依船舶減速10%、20%、30%時,分別為11.54克、9.12克、6.98克與7.37克、5.83克、4.46克,即減速程度越高,碳排放強度越低。(3)就船舶淨減排成本而言,大型船之艙位成本較高,因此CATCH值最高,而小型船之運送效率較小,需租傭較多船舶以維持相同運力,因此CATCH值亦偏高。四種船型在綜合考量下,以本研究NE7航線而言,經營Post-Panamax船型具有較佳之成本與環境效益。(4)在考慮經濟成長樂觀、平穩與悲觀下,於不同運價情境下,Panamax僅在高油價情境時,採行減速10%的利潤大於基準航速。而Post-Panamax船型在高油價與中油價時,分別減速20%、10%可增加獲益;低油價時則宜維持基準航速,因為此時之低油價情境,對航商而言已無減速之誘因。(5)就碳排放減量而言,Panamax與Post- Panama船型減速10%、20%、30%時,每航次分別較基礎航速減量9%、20%、33%碳排放。(6)航速與船隊方面,Panamax船型於低、中、高油價時,最佳航速各為24.5、24.5、22.05節,船舶數量分別為8、9、9艘可達最大利潤;Post-Panamax船型最佳航速各為25、22.5、20節,船舶數量分別為8、9、10艘可達最大利潤。

    This paper used the Activity-based method to calculate fuel consumption and the corresponding emissions of Feeder, Panamax, Post-Panamax and New-Panamax container vessels, and by including the CATCH model to evaluate the impact of bunker cost changes on three scenarios of speed reduction (10%, 20%, and 30%). This paper developed a profit model to analyze the economic and environmental effects of slow-steaming in different economic conditions, freight rates, bunker prices with carbon trading.
    The results were as follow: (1) The CO2 emission intensity for Feeder, Panamax, Post-Panamax and New-Panamax container vessels was 14.25, 10.56, 9.57, 9.10 grams of CO2 per tonne nautical mile respectively. The results show that New-Panamax vessels lead to better environmental outcomes than Feeder. (2) By decelerating the cruising speed by 10%, 20%, 30% Feeder vessels reduced emission intensity to 11.54, 9.12, 6.98 grams of CO2 per tonne nautical mile respectively, whereas New-Panamax vessels reduced emission intensity to 7.37, 5.83, 4.46 grams of CO2 per tonne nautical mile respectively. When the same deceleration speed applies, which proves that slow-steaming practice has a positive impact on the environmental protection. (3) This paper devised the CATCH model to identify the cost of averting a tonne of CO2-eq, the results show that the CATCH value of larger ships is the highest, as a result of the high slot costs, meanwhile, the second-highest are smaller ships, due to lack of capacity efficiency. Considering all these factors, we draw a conclusion that Post-Panamax vessels are the best choice based on economic terms with application to the NE7 loop as a case study. (4) Under different economic conditions, the results justify that Panamax practiced 10% of slow-steaming which remains optimal only at high bunker prices across all scenarios; whereas Post-Panamax practiced 20%, 10% of slow steaming remains optimal at high and medium bunker prices; however There is no incentive for liner operators to practice slow-steaming at low bunker price. (5) In terms of emissions reduction, decelerating the cruising speed by 10%, 20%, 30% reduced emissions by 9%, 20%, 33% respectively.(6) The results reveal that the optimal deployment of vessels when sailing at low, medium, high prices of bunker prices for Panamax vessels are at 24.5, 24.5, 22.05 knots respectively, while 8, 9, 9 vessels are required, whereas Post-Panamax vessels are at 25, 22.5, 20 knots respectively, while 8, 9, 10 vessels are needed to guarantee the same weekly call.

    目錄I 表目錄III 圖目錄IV 第一章 緒論1 1.1 研究背景1 1.2 研究動機4 1.3 研究目的6 1.4 研究範圍8 第二章 文獻回顧14 2.1 海運碳排及減排策略14 2.2 船舶航速選擇15 2.3 船舶減速之減排效益19 2.4 減碳機制21 2.5 小結23 第三章 研究方法25 3.1 情境變數說明25 3.2 情境說明26 3.2.1 經濟成長樂觀26 3.2.2 經濟成長平穩27 3.2.3 經濟成長悲觀27 3.3 航速與油耗模型27 3.3.1 油耗與碳排放量30 3.4 排放強度31 3.5 CATCH成本分析32 3.6 利潤與船隊決策33 3.6.1 利潤模型34 3.6.2 船舶營運成本34 3.6.3 船隊數量35 3.7 小結36 第四章 實證分析37 4.1 資料說明與分析37 4.1.1 船舶資料說明38 4.1.2 航線說明38 4.2 貨櫃船之經濟及環境效益 40 4.2.1 船舶油耗及排放強度40 4.2.2 船舶減速之環境與經濟效益41 4.2.3 船舶淨減排成本43 4.3 經濟情境資料說明49 4.3.1 船舶數據說明 49 4.3.2 船舶航速與排放資料50 4.4 經濟情境與變數51 4.4.1 經濟成長樂觀54 4.4.2 經濟成長平穩59 4.4.4 兩船型不同減速策略與燃油價格關係68 4.4.5 兩船型不同燃油價格下航速與船隊70 4.5 小結72 第五章 結論與建議73 5.1 結論73 5.2 建議76 5.3 研究限制77 5.4 未來研究方向77 參考文獻79 英文文獻79 中文文獻82

    中文文獻
    林光、張志清,2010,航業經營與管理,航貿文化有限公司。
    鍾政棋、黃承傳,2003。散裝船傭船鏈經營型態之分析,運輸學刊,第 15 卷,第 1 期,99-113。
    華健、吳怡萱,2010。船舶大氣排放物減量決策模式,船舶科技,第三十八期,47-56。
    交通部航港局(民102年6月)。民104年9月30日,取自:http://web02.mtnet.gov.tw/MTNet/Default.aspx
    商品行情網。燃油價格。民104年9月2日,取自:http://cip.chinatimes.com/
    長榮海運。民104年9月30日,取自:http://www.evergreen-marine.com/tw/
    COSCO container lines。民104年10月10日,取自:http://www.coscon.com/home.do
    中華航運電子報。民104年9月30日,取自: http://www.cdnsp.com.tw/main.htm
    ARK Shipping and Agency Corp. 。民105年3月5日,取自: http://www.arkshipping.com.tw/ark.php?menu=cp¶m=ov
    Shanghai Shipping Exchange。民105年5月20日,取自:http://en.sse.net.cn/
    英文文獻
    Armstrong, V. N. (2013). Vessel optimisation for low carbon shipping.Ocean Engineering,73, 195-207.
    Aßmann, L. M., Andersson, J., & Eskeland, G. S. (2015). Missing in Action? Speed optimization and slow steaming in maritime shipping. Speed Optimization and Slow Steaming in Maritime Shipping (March 12, 2015). NHH Dept. of Business and Management Science Discussion Paper, (2015/13).
    Cariou, P. (2011). Is slow steaming a sustainable means of reducing CO 2 emissions from container shipping?. Transportation Research Part D: Transport and Environment,16(3), 260-264.
    Cariou, P., & Cheaitou, A. (2012). The effectiveness of a European speed limit versus an international bunker-levy to reduce CO 2 emissions from container shipping. Transportation Research Part D: Transport and Environment, 17(2), 116-123.
    Chang, C. C., & Wang, C. M. (2014). Evaluating the effects of speed reduce for shipping costs and CO 2 emission. Transportation Research Part D: Transport and Environment, 31, 110-115.
    Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping.Transportation Research Part D: Transport and Environment, 14(8), 593-598.
    Eide, M. S., Endresen, Ø., Skjong, R., Longva, T., & Alvik, S. (2009). Cost-effectiveness assessment of CO2 reducing measures in shipping. Maritime Policy & Management, 36(4), 367-384.
    Endresen, Ø., Sørgård, E., Sundet, J. K., Dalsøren, S. B., Isaksen, I. S., Berglen, T. F., & Gravir, G. (2003). Emission from international sea transportation and environmental impact. Journal of Geophysical Research: Atmospheres, 108(D17).
    Endresen, Ø., Sørgård, E., Behrens, H. L., Brett, P. O., & Isaksen, I. S. (2007). A historical reconstruction of ships' fuel consumption and emissions.Journal of Geophysical Research: Atmospheres, 112(D12).
    International Maritime Organization (2009). Second IMO GHG study 2009 Retrieved June 3, 2015,from http://www.bayplanningcoalition.org/downloads/dmc10/compendium/22_IMO%20GHG%20Exec%20Summary.pdf
    International Maritime Organization (2014). Third IMO GHG Study 2014.Retrieved July 14, 2015,from http://www.iadc.org/wp-content/uploads/2014/02/MEPC-67-6-INF3-2014-Final-Report-complete.pdf
    Intergovernmental Panel on Climate Change (2013). Fifth Assessment Report. Retrieved July 21, 2015, from https://www.ipcc.ch/report/ar5/
    International Energy Agency (2014). CO2 Emissions From Fuel Combustion Highlights 2014. Retrieved June 22, 2015, from https://www.iea.org/publications/freepublications/publication/co2-emissions-from-fuel-combustion-highlights-2014.html
    Klimont, Z., Smith, S. J., & Cofala, J. (2013). The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 8(1), 014003.
    Lindstad, H., Asbjørnslett, B. E., & Strømman, A. H. (2011). Reductions in greenhouse gas emissions and cost by shipping at lower speeds. Energy Policy, 39(6), 3456-3464.
    Ma (2014) When Will be the end of “Slow-steaming”? Retrieved July 6 , 2015,from http://www.cee.ntu.edu.sg/NewsnEvents/EPres/Documents/Sem30Sep14/Slowsteaming%20-%20NTU%202014.pdf
    Maloni, M., Paul, J. A., & Gligor, D. M. (2013). Slow steaming impacts on ocean carriers and shippers. Maritime Economics & Logistics, 15(2), 151-171.
    MAN Diesel & Turbo (2013). Propulsion Trends in Container Vessels. Retrieved July 2,2015,from http://www.mandieselturbo.com/files/news/filesof4672/5510-0040-01ppr_low.pdf
    Meyer, J., Stahlbock, R., & Voss, S. (2012, January). Slow steaming in container shipping. In System Science (HICSS), 2012 45th Hawaii International Conference on (pp. 1306-1314). IEEE.
    Notteboom, T. E., & Vernimmen, B. (2009). The effect of high fuel costs on liner service configuration in container shipping. Journal of Transport Geography, 17(5), 325-337.
    Psaraftis, H. N., & Kontovas, C. A. (2009). CO2 emission statistics for the world commercial fleet. WMU Journal of Maritime Affairs, 8(1), 1-25.
    Psaraftis, H. N., & Kontovas, C. A. (2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D: Transport and Environment, 15(8), 458-462.
    Psaraftis, H. N., Kontovas, C. A., & Kakalis, N. M. (2009, October). Speed reduction as an emissions reduction measure for fast ships. In 10th International Conference on Fast Sea Transportation FAST.
    Psaraftis, H. N., & Kontovas, C. A. (2013). Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transportation Research Part C: Emerging Technologies, 26, 331-351.
    Rightship (2013). Calculating and Comparing CO2 Emissions from the Global Maritime Fleet. Retrieved June 22, 2015, from http://site.rightship.com/media/14710/Rightship_GHG_Emission_Rating.pdf
    Ronen, D. (2011). The effect of oil price on containership speed and fleet size.Journal of the Operational Research Society, 62(1), 211-216.
    Seaspan Corporation (2016). Retrieved March 2, 2016, from http://www.seaspancorp.com
    United Nations Conference on Trade and development (2015). Review of Maritime Transport. Retrieved October17,2015, from http://unctad.org/en/PublicationsLibrary/rmt2015_en.pdf
    United Nations Conference on Trade and development (2013). Review of Maritime Transport. Retrieved September 2, 2015, from http://unctad.org/en/PublicationsLibrary/rmt2013_en.pdf
    Yin, J., Fan, L., Yang, Z., & Li, K. X. (2014). Slow steaming of liner trade: its economic and environmental impacts. Maritime Policy & Management, 41(2), 149-158.

    無法下載圖示 校內:2021-06-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE