簡易檢索 / 詳目顯示

研究生: 董沛綺
Tung, Pei-Chi
論文名稱: NSUN2甲基化轉運核糖核酸之分子結構研究
Structural study of NSUN2 in tRNA methylation
指導教授: 吳權娟
Wu, Chyuan-Chuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 89
中文關鍵詞: 轉錄後表觀修飾RNA m5C 甲基化RNA 甲基轉移酶NSUN2體外轉錄X 光晶體學冷凍電子顯微鏡(Cryo-EM)
外文關鍵詞: epitranscriptomics, RNA m5C methylation, RNA methyltransferases, NSUN2, X-ray crystallography, cryo-EM
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RNA 修飾在調控 RNA 功能中扮演關鍵角色,作為轉錄體與蛋白質體之間的緩衝機制,使細胞得以迅速應對環境變化。在人類中,NOL1/NOP2/Sun(NSUN)結構域家族與 DNA 甲基轉移酶 2(DNMT2)為催化 RNA 第五位碳甲基胞嘧啶(5-methylcytosine, m5C)修飾的酵素,分別作為 RNA m5C 的「書寫者」(writers),各自具有特定的受質選擇性。其中,NSUN2 可修飾多種類型的 RNA,包括 tRNA、rRNA、mRNA 與長鏈非編碼 RNA。NSUN2 活性上調會增加特定 mRNA 上的 m5C 修飾,進而促進癌症進程;相對地,NSUN2 功能缺失及 tRNA m5C 修飾下降則與神經功能異常相關,顯示其在維持 tRNA 穩定性中的重要角色。本研究旨在闡明 NSUN2 識別 RNA 受質的結構基礎。我們在體外證實 NSUN2 可專一性地修飾其已知 mRNA 與 tRNA 受質上的目標胞嘧啶,並發現其主要透過 RNA 的三級結構而非線性序列來辨識受質。為獲得 NSUN2 與受質複合體的結構資訊,我們純化了重組人類 NSUN2 蛋白,並製備體外轉錄的 RNA 作為受質進行複合體重組,後續利用 X 光晶體繞射與單顆粒冷凍電子顯微鏡(Cryo-EM)進行結構解析。此外,為探討 NSUN2 結合蛋白是否參與其受質特異性的調控,我們進一步以免疫沉澱結合質譜技術鑑定其互作蛋白群(interactome)。透過本研究,我們期望深入理解 NSUN2 的受質辨識機制,並為其於轉錄後表觀修飾中的功能奠定結構與理論基礎。

    RNA modifications play a crucial role in modulating RNA function, acting as a buffering system between the transcriptome and proteome to enable cells to rapidly adapt to environmental changes. In humans, members of the NOL1/NOP2/Sun (NSUN) domain-containing family and DNA methyltransferase 2 (DNMT2) catalyze 5-methylcytosine (m5C) modifications on RNA, functioning as "writers" with distinct substrate specificities. Among them, NSUN2 is capable of methylating a wide range of RNA substrates, including tRNAs, rRNAs, mRNAs, and long non-coding RNAs. Aberrant upregulation of NSUN2 enhances m5C deposition on specific mRNAs, which has been implicated in cancer progression. Conversely, loss of NSUN2 function and the resultant reduction in tRNA m5C levels are associated with neurological abnormalities, underscoring NSUN2’s essential role in maintaining tRNA homeostasis. In this study, we aim to elucidate the structural basis of RNA substrate recognition by NSUN2. We have demonstrated that NSUN2 specifically methylates target cytosines within known mRNA and tRNA substrates in vitro and found that it primarily recognizes its RNA targets through tertiary structure rather than linear sequence context. To gain structural insights into the NSUN2-substrate complex, we purified recombinant human NSUN2 protein and prepared in vitro transcribed RNA substrates for complex assembly. Both X-ray crystallography and single-particle cryo-electron microscopy (cryo-EM) were employed for structural determination. Additionally, to investigate the contribution of NSUN2-associated proteins to substrate specificity, we performed immunoprecipitation coupled with mass spectrometry to characterize the NSUN2 interactome. Through this work, we hope to advance our understanding of NSUN2’s substrate recognition mechanism and provide a structural framework for its role in epitranscriptomic regulation.

    Abstract I 中文摘要 II 致謝 III Table of Contents IV List of Tables VII List of Figures VIII Abbreviation IX 1 Introduction 1 1.1 The Role of RNA Modifications in Epitranscriptomics 1 1.2 The Role of m5C Modification in tRNA Biology 3 1.3 RNA m5C Writers: the NSUN Family of RNA m5C Methyltransferases 5 1.4 The NSUN2-mediated tRNA m5C modification 8 1.5 Structural Basis of NSUN2-Mediated RNA Recognition 10 2 Specific Aims 14 2.1 Purify NSUN2-ΔN recombinant protein 14 2.2 Characterize NSUN2’s substrate specificity toward tRNAs 14 2.3 Determine the structure of NSUN2-tRNA complex 15 2.4 Investigate NSUN2’s interactome 15 3 Materials and Methods 16 3.1 Materials 16 3.1.1 Plasmids and Constructs 16 3.1.2 Host cell lines 16 3.1.3 Antibodies 17 3.1.4 Synthetic oligonucleotides 17 3.1.5 List of RNA used in this study. 18 3.1.6 Buffers and Solutions 18 3.2 Methods 19 3.2.1 Protein Expression and Purification of NSUN2-ΔN 19 3.2.2 Preparation of tRNAGly Construct 20 3.2.3 Preparation of C48-50U and C48-50A tRNAGly Variants 21 3.2.4 Purification of human tRNALeu and Its C34A, C48A, and C34/48A Variants 23 3.2.5 Size-exclusion chromatographic analysis of NSUN2-ΔN-tRNAGly complex 24 3.2.6 MTase-Glo methyltransferase assay 25 3.2.7 Crystallization of NSUN2-tRNA Complex 26 3.2.8 Negative-stain electron microscopy (EM) analysis 27 3.2.9 Cryo-electron microscopy (cryo-EM) analysis 28 3.2.10Cell Culture 29 3.2.11Transient Expression of GFP-fused NSUN2 in Mammalian Cells 29 3.2.12Immunoprecipitation (IP) 30 4 Results 32 4.1 Structural Prediction and Domain Organization of HsNSUN2-ΔN 32 4.2 Expression and Purification of Recombinant HsNSUN2-ΔN 33 4.3 Preparation of tRNAGly 34 4.4 Preparation of C48-50U tRNAGly variant 35 4.5 Preparation of C48-50A tRNAGly variant 36 4.6 Preparation tRNALeu(CAA)4-1 and its variants 36 4.7 Complex formation between NSUN2-ΔN and tRNAGly revealed by size-exclusion chromatography 37 4.8 Substrate specificity of NSUN2-ΔN toward tRNAGly and tRNALeu analyzed by MTase-Glo assay 38 4.9 Protein crystallization screening results 40 4.10 Negative-stain EM reveals the morphology of the NSUN2-ΔN-tRNAGly complex 41 4.11 Identification of NSUN2-interacting proteins by IP-MS 42 5 Discussions 46 5.1 Functional Characterization of NSUN2-ΔN 46 5.2 Substrate Specificity and Methylation Site Preference 47 5.3 Structural investigation of the NSUN2-tRNA complex 49 5.4 NSUN2 protein-protein interactions 50 6 Conclusions 51 Tables 52 Table 1. The NSUN RNA:m5C MTase family. 52 Table 2. Protein precipitation ratio in crystallization screen. 53 Table 3. Protein interactors identified exclusively in NSUN2-FL immunoprecipitation. 54 Table 4. Protein interactors identified exclusively in NSUN2-FL-CA immunoprecipitation. 56 Table 5. Protein interactors identified in both NSUN2-FL and FL-CA immunoprecipitation. 57 Figures 58 Figure 1. Structure-based domain annotation of HsNSUN2-ΔN with the AlphaFold-predicted model. 58 Figure 2. The expression and purification of NSUN2-ΔN. 59 Figure 3. The design and production of WT tRNAGly(GCC)1-1. 61 Figure 4. The design and production of C48-50U tRNAGly(GCC)1-1. 62 Figure 5. The design and production of C48-50A tRNAGly(GCC)1-1. 63 Figure 6. The design and production of tRNALeu WT and mutants. 65 Figure 7. NSUN2-ΔN forms a complex with tRNAGly as analyzed by size-exclusion chromatography. 66 Figure 8. MTase-Glo assay of NSUN2-ΔN with various tRNA substrates. 68 Figure 9. Negative-stain EM visualization of the NSUN2-ΔN-tRNAGly complex. 69 Figure 10. Identification of NSUN2-interacting proteins by Immunoprecipitation-Mass Spectrometry (IP-MS). 71 References 72 Appendix Figures 77 Appendix Figure 1. Optimization of in vitro transcription and refolding conditions for tRNAGly synthesis. 77 Appendix Figure 2. Purification of in vitro transcribed tRNAGly using different clean-up methods. 78

    1. Delaunay, S., M. Helm, and M. Frye, RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet, 2024. 25(2): p. 104-122.
    2. Cui, L., et al., RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther, 2022. 7(1): p. 334.
    3. Roundtree, I.A., et al., Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017. 169(7): p. 1187-1200.
    4. Saletore, Y., et al., The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol, 2012. 13(10): p. 175.
    5. Lin, Y., et al., Post-Translational Modifications of RNA-Modifying Proteins in Cellular Dynamics and Disease Progression. Adv Sci (Weinh), 2024. 11(44): p. e2406318.
    6. Meyer, K.D., et al., 5' UTR m(6)A Promotes Cap-Independent Translation. Cell, 2015. 163(4): p. 999-1010.
    7. Frye, M., et al., RNA modifications modulate gene expression during development. Science, 2018. 361(6409): p. 1346-1349.
    8. Yang, X., et al., 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res, 2017. 27(5): p. 606-625.
    9. Li, X., X. Xiong, and C. Yi, Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods, 2016. 14(1): p. 23-31.
    10. Sloan, K.E., et al., Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol, 2017. 14(9): p. 1138-1152.
    11. Helm, M. and J.D. Alfonzo, Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland. Chem Biol, 2014. 21(2): p. 174-85.
    12. Blanco, S., et al., Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. Embo j, 2014. 33(18): p. 2020-39.
    13. Flamand, M.N., M. Tegowski, and K.D. Meyer, The Proteins of mRNA Modification: Writers, Readers, and Erasers. Annu Rev Biochem, 2023. 92: p. 145-173.
    14. Van Haute, L., et al., NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs. Nucleic Acids Res, 2019. 47(16): p. 8720-8733.
    15. Motorin, Y. and M. Helm, RNA nucleotide methylation. Wiley Interdiscip Rev RNA, 2011. 2(5): p. 611-31.
    16. Haag, S., et al., NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. Rna, 2015. 21(9): p. 1532-43.
    17. Chan, C.T., et al., Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun, 2012. 3: p. 937.
    18. Valesyan, S., et al., Stress-induced modification of Escherichia coli tRNA generates 5-methylcytidine in the variable loop. Proc Natl Acad Sci U S A, 2024. 121(46): p. e2317857121.
    19. Schaefer, M., et al., RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev, 2010. 24(15): p. 1590-5.
    20. Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8.
    21. Tuorto, F., et al., RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol, 2012. 19(9): p. 900-5.
    22. Gu, X., et al., Vital roles of m(5)C RNA modification in cancer and immune cell biology. Front Immunol, 2023. 14: p. 1207371.
    23. Long, T., et al., Sequence-specific and Shape-selective RNA Recognition by the Human RNA 5-Methylcytosine Methyltransferase NSun6. J Biol Chem, 2016. 291(46): p. 24293-24303.
    24. Huang, T., et al., Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat Struct Mol Biol, 2019. 26(5): p. 380-388.
    25. Guarnacci, M., et al., Substrate diversity of NSUN enzymes and links of 5-methylcytosine to mRNA translation and turnover. Life Sci Alliance, 2024. 7(9).
    26. Zhou, J., et al., Unveiling the potential impact of RNA m5C methyltransferases NSUN2 and NSUN6 on cellular aging. Front Genet, 2025. 16: p. 1477542.
    27. Heissenberger, C., et al., The ribosomal RNA m(5)C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans. Elife, 2020. 9.
    28. Liao, H., et al., Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res, 2022. 50(18): p. 10695-10716.
    29. Heissenberger, C., et al., Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res, 2019. 47(22): p. 11807-11825.
    30. Metodiev, M.D., et al., NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet, 2014. 10(2): p. e1004110.
    31. Aguilo, F., et al., Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1α. Cell Rep, 2016. 14(3): p. 479-492.
    32. Van Haute, L., et al., Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun, 2016. 7: p. 12039.
    33. Delaunay, S., et al., Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 2022. 607(7919): p. 593-603.
    34. Navarro, I.C., et al., Translational adaptation to heat stress is mediated by RNA 5-methylcytosine in Caenorhabditis elegans. Embo j, 2021. 40(6): p. e105496.
    35. Gkatza, N.A., et al., Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol, 2019. 17(6): p. e3000297.
    36. Chen, Y., et al., The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol, 2023. 253(Pt 2): p. 126773.
    37. Blaze, J., et al., Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior. Nat Commun, 2021. 12(1): p. 4913.
    38. Brzezicha, B., et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res, 2006. 34(20): p. 6034-43.
    39. Burgess, R.W. and E. Storkebaum, tRNA Dysregulation in Neurodevelopmental and Neurodegenerative Diseases. Annu Rev Cell Dev Biol, 2023. 39: p. 223-252.
    40. Li, P., et al., NSun2-Mediated tsRNAs Alleviate Liver Fibrosis via FAK Dephosphorylation. Cell Prolif, 2025: p. e70058.
    41. Khan, M.A., et al., Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet, 2012. 90(5): p. 856-63.
    42. Zhong, F., et al., NSUN6 inhibitor discovery guided by its mRNA substrate bound crystal structure. Structure, 2025. 33(3): p. 443-450.e4.
    43. Liu, R.J., et al., Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res, 2017. 45(11): p. 6684-6697.
    44. Jian, Q., et al., Liquid-liquid phase separation: an emerging perspective on the tumorigenesis, progression, and treatment of tumors. Front Immunol, 2025. 16: p. 1604015.
    45. Gonskikh, Y., et al., Spatial regulation of NSUN2-mediated tRNA m5C installation in cognitive function. Nucleic Acids Res, 2025. 53(2).
    46. Lu, H.-S., Investigating the substrate recognition mechanism of RNA m5C methyltransferase NSUN2, in Department of Biochemistry and Molecular Biology. 2025, National Cheng Kung University: Tainan.
    47. Wu, C.-R., Biochemical Analysis of NSUN2 in Substrate Recognition, in Department of Biochemistry and Molecular Biology. 2023, National Cheng Kung University: Tainan.
    48. Ying, S., et al., tRF-Gln-CTG-026 ameliorates liver injury by alleviating global protein synthesis. Signal Transduct Target Ther, 2023. 8(1): p. 144.
    49. Throll, P., et al., Structural basis of tRNA recognition by the m(3)C RNA methyltransferase METTL6 in complex with SerRS seryl-tRNA synthetase. Nat Struct Mol Biol, 2024. 31(10): p. 1614-1624.
    50. Kim, S., et al., RNA 5-methylcytosine marks mitochondrial double-stranded RNAs for degradation and cytosolic release. Mol Cell, 2024. 84(15): p. 2935-2948.e7.

    無法下載圖示 校內:2030-08-01公開
    校外:2030-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE