| 研究生: |
陳民騫 Chen, Min-Cian |
|---|---|
| 論文名稱: |
富氧燃煤及固態衍生燃料燃燒研究 Studies on Oxy-Coal Combustion and Burning of RDF-5 |
| 指導教授: |
林大惠
Lin, Ta_Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 富氧燃燒 、煙道氣迴流 、二氧化碳捕捉 、固態廢棄物衍生燃料 |
| 外文關鍵詞: | Oxy-fuel combustion, Flue gas recirculation, CO2 capture, RDF-5 |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究可分為三部分:(1) 理論分析富氧燃煤的質能平衡特性; (2) 燃燒爐滲入空氣定量分析;(3) 廢油泥製造之固態衍生燃料之燃燒特性實驗分析。
第一部份以煤做為燃料,在完全燃燒,固定總熱釋放率為1MW下,改變助燃空氣中的氧氣濃度(Ωo2),進行富氧燃燒(Ωo2=21%~100%)並結合煙道氣迴流(FGR=0%~75%)的質能平衡特性的理論分析。發現當助燃空氣中的氧濃度增加時,煙道氣中的氮氣濃度逐漸減少,而水蒸氣濃度及二氧化碳濃度便逐漸增加,此結果將有助於二氧化碳的捕捉。而使用不同燃煤,本身的熱值高低會影響其絕熱火焰溫度,其隨著助燃氣體氧濃度的上升而提高;隨著迴流率的上升而下降。
第二部分燃燒爐滲入空氣定量分析以重油為燃料,針對不同助燃空氣氧濃度(Ωo2=21%~100%)、煙道氣回流比例(FGR=0%~75%)以及空氣滲入比例,探討其燃燒平衡。當煙道氣迴流比例提升,後端滲入空氣將迴流至燃燒爐前端進口,滲入空氣中的氮氣比例也增加,因此會稀釋掉二氧化碳濃度。而隨著滲入空氣比例的增加,所需的助燃氣體將會變少,其助燃空氣輸入與助燃純氧輸入均整體下降。
第三部分廢油泥製造之固態衍生燃料之燃燒特性實驗分析,以廢油泥為基礎並製作RDF-5,針對不同原料調配比例製作出之RDF-5燃料進行熱值分析、燃燒時間分析以及質量損失分析。其RDF成品的熱值並不會因為製造程序上而大幅變動,因此可以在原料比例上作熱值計算調整。廢油泥的成分比例會影響RDF燃料之最低引燃溫度,當廢油泥比例增加時,會使得RDF燃料更為難以引燃並且燃燒後總質量減少百分率較低。而比較添加木屑與煤粉之間的關係,使用木屑所造成的燃燒質量損失率較使用煤粉大。
This research can be divided into three parts: (1) the mass and energy balance characteristics of oxy-coal combustion; (2) the analysis of furnace air-leakage-in; (3) experimental study of the combustion characteristics of RDF-5 produced from oil sludge.
In first part, the theoretical predictions of oxy-coal combustion were calculated. The mass and energy balance characteristics were considered with flue gas recirculation. Although it is beneficial to capture CO2 in flue gas with increasing oxygen concentration, the furnace temperature would be rapidly increased. However, flue gas recirculation system would carry back CO2, and that would decrease the furnace temperature considerably. Besides, the heat carried back in the flue gas would also reduce the fuel quantity. In comparison of different coal, the heating value plays an important role on adiabatic flame temperature. that the temperature would increase as the oxygen concentration of oxidizer increases, and decrease as the flue gas recirculation activates.
In second part, we investigated the effect of furnace air-leakage-in. With different operating conditions and air-leakage-in percentage, we built the fundamental of mass balance characteristics. While the FGR ratio increased, the leakage air would go back into the furnace. As a result, it would dilute the CO2 concentration. While the air-leakage-in percentage increased, the required oxidizer would be fewer, both air and oxygen requirement would decrease.
In third part, the objective of this study was to estimate the heating value and investigate combustion characteristics of RDF-5 produced from oil sludge. There were four main components, PE, wood powder, coal powder and oil sludge, in the RDF tested. We used calorimeter to have all components and RDF tested in order to acquire their heating values. The heating value of RDF was found to be simple algorithm sum of the heating value of each component. On combustion characteristics, we performed experiments to measure the ignition and extinguish time of RDF with different composition. It was found that the ignition characteristics had a strong relation with the oil sludge content. We also measured the relation between temperature and mass loss fraction due to burning and heating of different RDF compositions. It was found that as an ingredient, the combustion efficiency of wood powder would be better than coal power. All in all, the experimental results improved the understanding of the use of RDF and demonstrated the combustion characteristics of RDF based on oil sludge.
1.“BP Statistical Review of World Energy June 2010,” British Petroleum, 2010.
2.「能源領域」,政府科技發展策略規劃報告(民國93年版),行政院國家科學委員會,2005年。
3.「京都議定書」,聯合國氣候變化綱要公約第三次締約國大會,日本京都,1997年。
4.Jordal, K., Anheden, M., Yan, J., and Strömberg, L., “Oxyfuel Combustion for Coal-fired Power Generation with CO2 Captures –Opportunities and Challenges,” Seventh International Conference on Greenhouse Gas Control Technologies (GHGT), Vancouver, Canada, 2004.
5.Chiang, K. Y., Jih, J. C. , Lin, K. L. , “The effects of calcium hydroxide on hydrogen chloride emission characteristics during a simulated densified refuse-derived fuel combustion process,” Journal of Hazardous Materials, Vol. 157, pp. 170–178, 2008.
6.DTI, “Review of the Feasibility of Carbon Dioxide Capture and Storage in the UK,” Cleaner Fossil Fuels Programme, Department of Trade and Industry, 2003.
7.Lyngfelt, A., and Leckner, B., “Technologies for CO2 Separation,” Mini-Symposium on Carbon Dioxide Capture and Storage, Goteborg, pp. 25-35, 1999.
8.Chiesa, P., Consonni, S., and Lozza, G., “A Comparative Analysis of IGCCs with CO2 Sequestration,” Fourth International Conference on Greenhouse Gas Control Technologies (GHGT), Interlaken, pp.107-112, 1998.
9.Mattisson, T., and Lyngfelt, A., “Capture of CO2 Using Chemical-Looping Combustion,” First Biennial Meeting of the Scandinavian-Nordic, The Combustion Institute, Goteborg, pp.163-168, 2001.
10.Atwater, J. E., “Carbon Dioxide Control,” Oregon State University, 1996.
11.Chakravarti, S., Gupta, A., and Hunek, B., “Advanced Technology for the Capture of Carbon Dioxide from Flue Gases,” First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001.
12.Rao, A. B., and Rubin, E. S., “A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control,” Environmental Science & Technology, Vol.36, No.20, pp.4467-4475, 2002.
13.DOE, “Carbon Sequestration: State of Science,” Draft Report from the Office of Science, Department of Energy, Washington, D.C., 1999.
14.Deppe, G., Tam, S. S., Young, J. S., Anderson, G. K., Le, L. and Spencer, D. F., “A High Pressure Carbon Dioxide Separation Process in an IGCC Plant,” Proceedings of the Future Energy Systems and Technology for CO2 Abatement, Antwerp, Belgium, pp. 115-122, 2002.
15.Bates, E. D., Mayton, R. D., Ntai, I., and Davis, J. H., “CO2 Capture by a Task-Specific Ionic Liquid,” J. A. C. S., Vol. 124, No. 6, pp. 926-927, 2002.
16.Office of Fossil Energy, “Carbon Capture Research,” http://fossil.energy.gov/programs/sequestration/capture/index.html, Department of Energy, Aug 1, 2005.
17.Tan, Y., Croiset, E., Douglas, M. A., and Thambimuthu, K. V., “Combustion Characteristics of Coal in a Mixture of Oxygen and Recycled Flue Gas,” Fuel, Vol. 85, No. 4, pp. 507-512, 2006.
18.Giacomo, B., Alessandro, B., and Giuseppe, R., “Thermodynamics Applied to Oxygen Enrichment of Combustion Air” Energy Conversion and Management, Vol.43, pp.2589-2600, 2002.
19.Thekdy, A. C., and Vereeke, F. J. “Fuel Efficiency Improvement by Oxygen Enrichment of Combustion Air,” Ind. Heat, Vol.48, No.6, pp.22-23, 1981.
20.Hu, Y., Naito, S., Kobayashi, N., Hasatani, M., “CO2 capture using oxygen enganced combustion strategies for natural gas power plants” Fuel, Vol. 79, Issue: 1-2, pp. 1925-1932, 2000
21.Ho, K. K., Kim, Y., Lee, S. M. and Ahn, K. Y. “NO reduction in 0.03-0.2 MW oxy-fuel combustor using flue gas recirculation technology.” Preceeding s of the Combustion Institute, Vol. 31, pp.3377-3384, 2007.
22.Sturgeona, D. W., Camerona, E. D., Fitzgeralda, F. D, “Demonstration of an oxyfuel combustion system.” Energy Procedia, Vol.1, pp. 471–478, 2009.
23.Ochs, T. and Oryshchyn, D., “Results of initial operation of the Jupiter Oxygen Corporation oxyfuel 15 MWth burner test facility.” Energy Procedia, Vol. 1, pp. 511-518, 2009.
24.Strömberg, L. and Lindgren, G., “Update on Vattenfall’s 30 MWth Oxyfuel Pilot Plant in Schwarze Pumpe.” Energy Procedia, Vol. 1, pp. 581-589, 2009.
25.Zhu, G. Y., Zhu, X., Fan, Q. and Wan, X., “Recovery of biomass wastes by hydrolysis in sub-critical water, Resources, Conservation and Recycling,” Vol. 55, Issue 4, pp. 409-416, 2011.
26.Yang, K. Y., “Acid Sludge Treatment by Hydrolysis and Neutralization,”中國科學院上海冶金研究所,材料物理與化學博士論文,2000年。
27.Otadi, N., Hassani, A. H., Javid, A. H. and Khiabani, F. F., “Oily Compounds Removal in Wastewater Treatment System of Pars Oil Refinery to Improve Its Efficiency in a Lab Scale Pilot,” Journal of Water Chemistry and Technology, Vol. 9, pp. 725-729, 2011.
28.Wang, H. J., Zhang, Z. Z. and Li, Q. B., “Development of treatment of oil-contaminated sludge by composting, ” Techniques and Equipment for Environmental Pollution Control, Vol. 3, No. 4, 2002.
29.張士萍,鄭廣宏,王磊,“高效微生物菌群降解含機油廢水研究,” Environmental Engineering, Vol. 26, No. 2, 2008.
30.Banat, I. M., “Biosurfactants Production and Possible Uses in Microbial Enhanced Oil Recovery and Oil Pollution Remediation: A Review,” Bioresource Technology, Vol. 51, Issue 1, pp. 1-1, 1995.
31.Buekens, A. and Schoeters, J., “European experience in the pyrolysis and gasification of solid wastes,” AIChE annual meeting, San Francisco, CA, USA, 1984.
32.Muhlen, Wanzl and Van, H., “Characterization of carbon containing materials with respect to pyrolysis and gasification,” EEC Conference on Pyrolysis and Gasification, Ferrero et al., Eds, Elsevier: London, pp. 72, 1989.
33.Valerio, C., Cristiano, N., Luigi, P., Mauro, R. and Leonardo, T., “A Fundamental Study on Conventional Pyrolysis of a Refuse-Derived Fuel,” Industrial & Engineering Chemistry Research, Vol. 34, pp. 2006–2020, 1995.
34.葛家賢、吳佩芬,“固態廢棄物衍生燃料技術,”工程月刊,76 卷,6 期,39~46 頁,民國九十年。
35.楊鏡堂、陳建志、黃郁棻、許妙行、萬曉明,“國家新能源科技發展規劃現況,”中華民國科學技術年鑑,25~29 頁,民國九十七年。
36.藤原壽和,“垃圾焚化爐排放戴奧辛類物質的長期監測系統”,台日環境論壇專刊,38~42 頁,民國九十三年。
37.工業技術研究院,“生物能源技術應用研究計畫,九十二年度執行報告,”經濟部能源局,民國九十三年。
38.工業技術研究院,“廢棄物能源利用技術開發與推廣計畫,” ,全程執行總報告,經濟部能源局,民國九十四年。
39.Chiang, K. Y., Jih, J. C. and Lin, K. L., “The effects of calcium hydroxide on hydrogen chloride emission characteristics during a simulated densified refuse-derived fuel combustion process,” Journal of Hazardous Materials, Vol. 157, pp. 170-178, 2008.
40.Alter, H., “International Reports the Recycling of Refuse-Derived Fuel,” Waste Management & Research, Vol. 14, pp. 313-317, 1996.
41.Caputo, A. C. and Pelagagge, P. M., “RDF Production Plants: I Design and Costs,” Applied Thermal Engineering, Vol. 22, pp. 423-437, 2002.
42.Kobyashia, N., Itayaa, Y., Piaob, G., Moric, S., Kondod, M., Hamaid, M. and Yamaguchi, M., “The behavior of flue gas from RDF combustion in a fluidized bed,” Powder Technology, Vol. 151, pp. 87– 95, 2005.
43.Barlow, K. M., Boley, G. L. and Smith, M. L., “Design Evaluation and Operating Experience of the City of Madison - Madison Gas & Electric Company Energy Recovery Project,” Proceedings of Waste Processing Conference, Washington D. C., pp. 411-425, 1980.
44.Graham, D. H. and Mackev, J. E., “Co-firing RDF and Coal – An Updated on Resource Recovery in Monroe County,” National Waste Processing Conference, New York, USA, pp.79-90, 1982.
45.Wan, H. P., Chang, Y. H., Chien, W. C., Lee, H. T. and Huang, C. C., “Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler,” Fuel, Vol. 87, pp. 761-767, 2008.
46.Kupka, T., Mancini, M., Irmer, M. and Weber, R., “Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel,” Fuel, Vol. 87, pp. 2824–2837, 2008.
47.Liu, G. Q., Itaya, Y., Yamazaki, R., Mori, S., Yamaguchi, M. and Kondoh, M., “Fundamental study of the behavior of chlorine during the combustion of single RDF,” Waste Management, Vol. 21, pp. 427–433, 2001.
48.Hernandez-Atonal, F. D., Ryu, C., Sharifi, V. N., Swithenbank, J., “Combustion of refuse-derived fuel in a fluidised bed,” Chemical Engineering Science, Vol. 62, pp. 627 – 635, 2007.
49.Fua, Z. M., Li, X. R. and Koseki, H., “Heat generation of refuse derived fuel with water,” Journal of Loss Prevention in the Process Industries, Vol. 18, pp. 27–33, 2005.
50.陳嘉元,“生物污泥製成固態衍生燃料之可行性研究,”第十七屆廢棄物處理技術研討會論文集,民國九十一年。
51.李文湧,“稻桿製成固態衍生燃料之可行性研究,”第十七屆廢棄物處理技術研討會論文集,民國九十一年。
52.吳佩芬,“紙業廢棄物製成固態衍生燃料之可行性研究,”第十七屆廢棄物處理技術研討會論文,民國九十一年。
53.Luoranen, M., Soukka, R., Denafas, G. and Horttanainen, M., “Comparison of energy and material recovery of household waste management from the environmental point of view – Case Kaunas, Lithuania,” Applied Thermal Engineering, Vol. 29, pp. 938–944, 2009.
54.Caputo, A. C. and Pelagagge, P. M., “RDF production plants: II Economics and profitability,” Applied Thermal Engineering, Vol. 22, pp. 439–448, 2002.
55.戴文堅、李宗憲,“固態廢棄物衍生燃料技術之應用評估,”資源與環境研討會,民國九十二年。
56.花蓮縣環境保護局,“RDF 技術實用性探討,”花蓮縣政府96 年度計畫研究報告,民國九十六年9 月。
57.Wey, K. D., “Refuse-derived fuel as a secondary energy in Taiwan—Using Hotelling space allocation model,” Resources Policy, Vol. 31, pp. 204-210, 2006.
58.林成原,謝孟穎,“An investigation on improvement of refining processes for used lube oil,”國立海洋大學輪機工程系碩士學位論文,民國九十四年。
59.邱義豐,“中鋼公司固廢資源化—廠內回收系統介紹,”工業減廢暨與續發展研討會,民國九十一年。
校內:2015-07-08公開