簡易檢索 / 詳目顯示

研究生: 陳嘉辛
Chenn, Jia-Shin
論文名稱: 低壓化學氣相沈積高效率鈣鈦礦薄膜太陽能電池分析
Low-pressure Chemical Vapor Deposition for Efficient Perovskite Solar Cells
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 低壓化學氣相沈積鈣鈦礦太陽能電池Formamidinium lead iodide 鈣鈦礦太陽能電池
外文關鍵詞: Low pressure chemical vapor deposition, Perovskite solar cell, Formamidinium lead iodide perovskite solar cell
相關次數: 點閱:172下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要著重在氣相沈積合成鈣鈦礦薄膜載在 n-type 結構之太陽能電池以及在不 同反應時間、溫度與壓力條件下合成鈣鈦礦膜之分析。由初期高真空下的共蒸鍍系統 發展 出 的 不 同 氣 相 沈 積 合 成 法 , 透過 緩 慢 的 反 應 過 程 來 控制 PbI2 與 CH3NH3I(Methylammonium iodide, MAI)的反應來合成鈣鈦礦,進而達到較佳的鈣鈦礦 成核與成長過程,氣相沈積合成之鈣鈦礦晶粒大且無破洞可減少缺陷與漏電的產生,在 吸收(UV-vis)與受激螢光放光(Photoluminescence)等光學分析上皆與溶液製成法合成 之高效率鈣鈦礦有相同的結果,說明氣相沈積為可合成高效率鈣鈦礦的方法之一。透 過高溫爐管加熱系統進行單加熱區的低壓化學氣相沈積來控制反應合成鈣鈦礦的環 境,MAPbI3 鈣鈦礦元件效率最高可達到 15.33%。除了使用在傳統之 MAPbI3 的鈣鈦礦 外也可用於不同材料,FAPbI3(Formamidinium lead iodide)是一個能隙較 MAPbI3 窄的材 料,約為 1.45 eV (MAPbI3 為 1.54 eV),因此吸光波長範圍會紅移而提升元件的光電流值, 進一步提升元件效率,FAPbI3 鈣鈦礦元件效率可達到 11.41%。

    In this study, we demonstrated low-pressure chemical vapor deposition (LPCVD) method to fabricate perovskite solar cells. This method substituted for the solution process because it had slow reaction rate between PbI2 and CH3NH3I (Methylammonium iodide, MAI). The slow reaction rate produced a dense and uniform perovskite film and improved its grain size of ~500 nm. The power conversion efficiency of MAPbI3 perovskite solar cell obtained by LPCVD reached 15.33%. We also demonstrated HC(NH2)2PbI3FAPbI3 perovskite solar cell reached 11.41% by LPCVD method.

    摘要 I ExtendedAbstract II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 太陽能電池之演進與發展 1 1-2 各類太陽能電池之原理 3 1-2-1 矽晶太陽能電池 3 1-2-2 染料敏化太陽能電池 4 1-3 太陽能電池元件量測原理 5 1-3-1 太陽能光譜與空氣質量對太陽光照度之影響 5 1-3-2 太陽能電池量測參數與原理 6 1-3-3 量子轉換效率量測原理 8 1-4 研究動機 8 第二章 文獻回顧 10 2-1 有機無機混成鈣鈦礦發展 10 2-2 氣相沈積鈣鈦礦的演進 15 第三章元件製備與分析儀器原理 36 3-1 實驗儀器與藥品 36 3-1-1 實驗儀器 36 3-1-2 使用藥品 40 3-2 實驗流程 41 3-2-1 基板製備 41 3-2-2 under layer 阻擋層製備與TiCl4 前處理 41 3-2-3 TiO2 多孔層製備 42 3-2-4 氣相合成鈣鈦礦步驟 42 3-2-5 電洞傳輸層與電極製備 42 3-3 製成儀器工作原理 43 3-3-1 高溫爐管加熱系統 43 3-3-2 高真空蒸鍍系統 44 3-4 量測與分析儀器工作原理 44 3-4-1 高解析場發射掃描電子式顯微鏡(SEM) 44 3-4-2 X 光繞射分析儀(XRD) 44 3-4-3 二維表面粗糙儀(Alpha step) 45 3-4-4 吸收光譜儀(UV-vis spectroscopy) 45 3-4-5光致螢光與拉曼光譜儀(PL & Raman spectroscopy) 46 3-4-6電流密度-電壓特性曲線量測(J-V curves) 46 3-4-7光電轉換效率量測(IPCE) 47 第四章 結果與討論 49 4-1 PbI2 濃度對氣相沈積合成鈣鈦礦的影響 50 4-1-1 TiO2 多孔層厚度分析 50 4-1-2 碘化鉛濃度分析 52 4-2 氣相沈積反應時間、溫度與壓力對鈣鈦礦的影響 58 4-2-1 氣相反應時間對鈣鈦礦合成影響之分析 58 4-2-2 氣相反應溫度對合成鈣鈦礦影響之分析 64 4-2-3 工作壓力對氣相合成鈣鈦礦影響之分析 71 4-3 氣相沈積鈣鈦礦在平板結構與HC(NH2)2PbI3鈣鈦礦之分析 73 4-3-1 氣相沈積鈣鈦礦在平板結構之分析 73 4-3-2 氣相沈積HC(NH2)2PbI3 (FAPbI3)鈣鈦礦之分析 76 第五章 結論與未來發展 82 第六章 參考文獻 83

    1. Becquerel, E., Compt. Rend., p.145, 1839
    2. D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys. 25, 676 , 1954
    3. D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 28, 671, 1976
    4. Andrew W. Blakers, Aihua Wang, Adele M. Milne, Jianhua Zhao, Martin A. Green,Appl. Phys. Lett. 55, 1363, 1989
    5. Verlinden P, Deng W, Zhang X, Yang Y, Xu J, Shu Y,Quan P, Sheng J, Zhang S, Bao J, Ping F, Zhang Y,Feng Z. Strategy, Development and Mass Production of High Efficiency Crystalline Si PV Modules, Paper 4sMoO.1.4, 6th World Conf. on PV Energy Conversion, Kyoto, November 2014.
    6. First Solar Press Release, August 5, 2014.
    7. Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli IC, Higashi
    GS.27.6% conversion efficiency, a new record for single-junction solar cells under1 sun illumination. Proceedings of the 37th IEEE Photovoltaic SpecialistsConference,2011.
    8. M. Osborne Hanergy’s Solibro has 20.5% CIGS solarcell verified by NREL, 8,April,2014.
    9. Chiu PT, Law DL, Woo RL, Singer S, Hong WD, Zakaria A, Boisvert JC,Mesropian S, King RR, Karam NH. Continued progress on direct bonded 5J space and terrestrial cells. Proc. 40th IEEE PVSC 2014
    10. Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Proceedings, 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, Japan 2013.
    11. Dr Frank Dimroth, et al. Press Release 22/13, September 23, 2013
    12.Komiya R, Fukui A, Murofushi N, Koide N,Yamanaka R, Katayama H. Improvement of the conversion efficiency of a monolithic type dye-sensitizedsolar cell module. Technical Digest, 21st InternationalPhotovoltaic Science and Engineering Conference, Fukuoka, November 2011.
    13. B. O’Regan, M.Grätzel, Nature, 335, p.737, 1991
    14. M. Grätzel, Nature, 414,6861, p.338-344, 2001
    15. P. Peumans and S. R. Forrest, Appl. Phys. Lett., 79, 1, p.126, 2001
    16. Jérémie Werner, Ching-Hsun Weng, Arnaud Walter, Luc Fesquet, Johannes Peter Seif, Stefaan De Wolf, Bjoern Niesen, Christophe Ballif, J. Phys. Chem. Lett., 7 (1),pp 161–166, 2016
    17. M. Grätzel, J. Photochem. and Photobio., C: Photochem. Reviews, 4, p.145–153,2003
    18. Reference Solar Spectral Irradiance: Air Mass 1.5, American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for BR Photovoltaic Performance Evaluation
    19. A. Carson, Solar Cell Research Progress, PP.23-39
    20. Greg P. Smestad, Optoelectronics of Solar Cells, pp.37-44
    21. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, J. Am.Chem.Soc., 131 (17), p.6050–6051, 2009
    22. Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl,Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, Nam-Gyu Park, Scientific Reports, 2: 591, 2012
    23. Lee Michael M., Teuscher Joël, Miyasaka Tsutomu, Murakami Takurou N., Snaith, Henry J., Science, 338, 6107, p.643-647, 2012
    24. Burschka Julian, Pellet Norman, Moon Soo-Jin, Humphry-Baker Robin, Gao Peng, Nazeeruddin Mohammad K., Grätzel Michael, Nature, 499, 7458, p.316-319, 2013
    25. Jeon Nam Joong, Noh Jun Hong, Kim Young Chan, Yang Woon Seok, Ryu Seung chan, Seok Sang Il, Nature Materials, 13, 9, p.897-903, 2014
    26. Liu Mingzhen, Johnston Michael B., Snaith Henry J., Nature, 501, 7467, p.395-398,2013
    27. Olga Malinkiewicz, Aswani Yella, Yong Hui Lee, Guillermo Mínguez Espallargas, Michael Grätzel, Mohammad K. Nazeeruddin, Henk J. Bolink, Nature Photonics, 8,p.128–132, 2014
    28. Chang-Wen Chen, Hao-Wei Kang, Sheng-Yi Hsiao, Po-Fan Yang, Kai-Ming Chiang, Hao-Wu Lin, Adv. Mater., 26, 38, p.6647-6652, 2014
    29. Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, Yang Yang, J. Am. Chem. Soc., 136 (2), p.622– 625,2014
    30. Hao Hu, Dong Wang, Yuanyuan Zhou, Jiliang Zhang, Siliu Lv, Shuping Pang, Xiao Chen, Zhihong Liu, Nitin P. Padture, Guanglei Cui, RSC Adv., 4, p.28964–28967, 2014
    31. Hisham A. Abbas, Ranjith Kottokkaran, Balaji Ganapathy, Mehran Samiee, Liang Zhang, Andrew Kitahara, Max Noack, Vikram L. Dalal, APL Mater., 3, 1, 2015
    32. Matthew R. Leyden, Luis K. Ono, Sonia R. Raga, Yuichi Kato, Shenghao Wang and Yabing Qi, J. Mater. Chem. A, 2, p.18742–18745, 2014
    33. Giulia Longo, Lido n Gil-Escrig, Maarten J. Degen, Michele Sessolo, Henk J.Bolink, Chem. Commun., 51, p.7376-7378, 2015
    34. Yanke Peng, Gaoshan Jing, Tianhong Cui, J. Mater. Chem. A,3, p.12436-12442,2015
    35. Yanbo Li, Jason K. Cooper, Raffaella Buonsanti, Cinzia Giannini, Yi Liu, Francesca M. Toma, Ian D. Sharp, J. Phys. Chem. Lett., 6, p.493−499, 2015
    36. Po-Shen Shen, Jia-Shin Chen, Yu-Hsien Chiang, Ming-Hsien Li, Tzung-Fang Guo, Peter Chen, Adv. Mater. Interfaces, 3, 8, 2016
    37. Qi Chen, Huanping Zhou, Tze-Bin Song, Song Luo, Ziruo Hong, Hsin-Sheng Duan,Letian Dou, Yongsheng Liu, and Yang Yang, Nano Lett., 14, p.4158−4163, 2014
    38. Laboratory for Advanced Molecular Processing, Chemical Vapor Deposition Atomic Layer Deposition
    39. Oatley CW, Nixon WC, Pease RFW, Scanning electron microscopy. Adv
    Electronics Electron Phys, 21, p.181–247, 1965.
    40. Jinli Yang, Braden D. Siempelkamp, Dianyi Liu, Timothy L. Kelly, ACS nano, 9, 2, p.1955-1963, 2015

    下載圖示 校內:2020-08-07公開
    校外:2020-08-07公開
    QR CODE