| 研究生: |
陳嘉辛 Chenn, Jia-Shin |
|---|---|
| 論文名稱: |
低壓化學氣相沈積高效率鈣鈦礦薄膜太陽能電池分析 Low-pressure Chemical Vapor Deposition for Efficient Perovskite Solar Cells |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 低壓化學氣相沈積 、鈣鈦礦太陽能電池 、Formamidinium lead iodide 鈣鈦礦太陽能電池 |
| 外文關鍵詞: | Low pressure chemical vapor deposition, Perovskite solar cell, Formamidinium lead iodide perovskite solar cell |
| 相關次數: | 點閱:172 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要著重在氣相沈積合成鈣鈦礦薄膜載在 n-type 結構之太陽能電池以及在不 同反應時間、溫度與壓力條件下合成鈣鈦礦膜之分析。由初期高真空下的共蒸鍍系統 發展 出 的 不 同 氣 相 沈 積 合 成 法 , 透過 緩 慢 的 反 應 過 程 來 控制 PbI2 與 CH3NH3I(Methylammonium iodide, MAI)的反應來合成鈣鈦礦,進而達到較佳的鈣鈦礦 成核與成長過程,氣相沈積合成之鈣鈦礦晶粒大且無破洞可減少缺陷與漏電的產生,在 吸收(UV-vis)與受激螢光放光(Photoluminescence)等光學分析上皆與溶液製成法合成 之高效率鈣鈦礦有相同的結果,說明氣相沈積為可合成高效率鈣鈦礦的方法之一。透 過高溫爐管加熱系統進行單加熱區的低壓化學氣相沈積來控制反應合成鈣鈦礦的環 境,MAPbI3 鈣鈦礦元件效率最高可達到 15.33%。除了使用在傳統之 MAPbI3 的鈣鈦礦 外也可用於不同材料,FAPbI3(Formamidinium lead iodide)是一個能隙較 MAPbI3 窄的材 料,約為 1.45 eV (MAPbI3 為 1.54 eV),因此吸光波長範圍會紅移而提升元件的光電流值, 進一步提升元件效率,FAPbI3 鈣鈦礦元件效率可達到 11.41%。
In this study, we demonstrated low-pressure chemical vapor deposition (LPCVD) method to fabricate perovskite solar cells. This method substituted for the solution process because it had slow reaction rate between PbI2 and CH3NH3I (Methylammonium iodide, MAI). The slow reaction rate produced a dense and uniform perovskite film and improved its grain size of ~500 nm. The power conversion efficiency of MAPbI3 perovskite solar cell obtained by LPCVD reached 15.33%. We also demonstrated HC(NH2)2PbI3FAPbI3 perovskite solar cell reached 11.41% by LPCVD method.
1. Becquerel, E., Compt. Rend., p.145, 1839
2. D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys. 25, 676 , 1954
3. D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 28, 671, 1976
4. Andrew W. Blakers, Aihua Wang, Adele M. Milne, Jianhua Zhao, Martin A. Green,Appl. Phys. Lett. 55, 1363, 1989
5. Verlinden P, Deng W, Zhang X, Yang Y, Xu J, Shu Y,Quan P, Sheng J, Zhang S, Bao J, Ping F, Zhang Y,Feng Z. Strategy, Development and Mass Production of High Efficiency Crystalline Si PV Modules, Paper 4sMoO.1.4, 6th World Conf. on PV Energy Conversion, Kyoto, November 2014.
6. First Solar Press Release, August 5, 2014.
7. Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli IC, Higashi
GS.27.6% conversion efficiency, a new record for single-junction solar cells under1 sun illumination. Proceedings of the 37th IEEE Photovoltaic SpecialistsConference,2011.
8. M. Osborne Hanergy’s Solibro has 20.5% CIGS solarcell verified by NREL, 8,April,2014.
9. Chiu PT, Law DL, Woo RL, Singer S, Hong WD, Zakaria A, Boisvert JC,Mesropian S, King RR, Karam NH. Continued progress on direct bonded 5J space and terrestrial cells. Proc. 40th IEEE PVSC 2014
10. Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Proceedings, 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, Japan 2013.
11. Dr Frank Dimroth, et al. Press Release 22/13, September 23, 2013
12.Komiya R, Fukui A, Murofushi N, Koide N,Yamanaka R, Katayama H. Improvement of the conversion efficiency of a monolithic type dye-sensitizedsolar cell module. Technical Digest, 21st InternationalPhotovoltaic Science and Engineering Conference, Fukuoka, November 2011.
13. B. O’Regan, M.Grätzel, Nature, 335, p.737, 1991
14. M. Grätzel, Nature, 414,6861, p.338-344, 2001
15. P. Peumans and S. R. Forrest, Appl. Phys. Lett., 79, 1, p.126, 2001
16. Jérémie Werner, Ching-Hsun Weng, Arnaud Walter, Luc Fesquet, Johannes Peter Seif, Stefaan De Wolf, Bjoern Niesen, Christophe Ballif, J. Phys. Chem. Lett., 7 (1),pp 161–166, 2016
17. M. Grätzel, J. Photochem. and Photobio., C: Photochem. Reviews, 4, p.145–153,2003
18. Reference Solar Spectral Irradiance: Air Mass 1.5, American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for BR Photovoltaic Performance Evaluation
19. A. Carson, Solar Cell Research Progress, PP.23-39
20. Greg P. Smestad, Optoelectronics of Solar Cells, pp.37-44
21. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, J. Am.Chem.Soc., 131 (17), p.6050–6051, 2009
22. Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl,Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, Nam-Gyu Park, Scientific Reports, 2: 591, 2012
23. Lee Michael M., Teuscher Joël, Miyasaka Tsutomu, Murakami Takurou N., Snaith, Henry J., Science, 338, 6107, p.643-647, 2012
24. Burschka Julian, Pellet Norman, Moon Soo-Jin, Humphry-Baker Robin, Gao Peng, Nazeeruddin Mohammad K., Grätzel Michael, Nature, 499, 7458, p.316-319, 2013
25. Jeon Nam Joong, Noh Jun Hong, Kim Young Chan, Yang Woon Seok, Ryu Seung chan, Seok Sang Il, Nature Materials, 13, 9, p.897-903, 2014
26. Liu Mingzhen, Johnston Michael B., Snaith Henry J., Nature, 501, 7467, p.395-398,2013
27. Olga Malinkiewicz, Aswani Yella, Yong Hui Lee, Guillermo Mínguez Espallargas, Michael Grätzel, Mohammad K. Nazeeruddin, Henk J. Bolink, Nature Photonics, 8,p.128–132, 2014
28. Chang-Wen Chen, Hao-Wei Kang, Sheng-Yi Hsiao, Po-Fan Yang, Kai-Ming Chiang, Hao-Wu Lin, Adv. Mater., 26, 38, p.6647-6652, 2014
29. Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, Yang Yang, J. Am. Chem. Soc., 136 (2), p.622– 625,2014
30. Hao Hu, Dong Wang, Yuanyuan Zhou, Jiliang Zhang, Siliu Lv, Shuping Pang, Xiao Chen, Zhihong Liu, Nitin P. Padture, Guanglei Cui, RSC Adv., 4, p.28964–28967, 2014
31. Hisham A. Abbas, Ranjith Kottokkaran, Balaji Ganapathy, Mehran Samiee, Liang Zhang, Andrew Kitahara, Max Noack, Vikram L. Dalal, APL Mater., 3, 1, 2015
32. Matthew R. Leyden, Luis K. Ono, Sonia R. Raga, Yuichi Kato, Shenghao Wang and Yabing Qi, J. Mater. Chem. A, 2, p.18742–18745, 2014
33. Giulia Longo, Lido n Gil-Escrig, Maarten J. Degen, Michele Sessolo, Henk J.Bolink, Chem. Commun., 51, p.7376-7378, 2015
34. Yanke Peng, Gaoshan Jing, Tianhong Cui, J. Mater. Chem. A,3, p.12436-12442,2015
35. Yanbo Li, Jason K. Cooper, Raffaella Buonsanti, Cinzia Giannini, Yi Liu, Francesca M. Toma, Ian D. Sharp, J. Phys. Chem. Lett., 6, p.493−499, 2015
36. Po-Shen Shen, Jia-Shin Chen, Yu-Hsien Chiang, Ming-Hsien Li, Tzung-Fang Guo, Peter Chen, Adv. Mater. Interfaces, 3, 8, 2016
37. Qi Chen, Huanping Zhou, Tze-Bin Song, Song Luo, Ziruo Hong, Hsin-Sheng Duan,Letian Dou, Yongsheng Liu, and Yang Yang, Nano Lett., 14, p.4158−4163, 2014
38. Laboratory for Advanced Molecular Processing, Chemical Vapor Deposition Atomic Layer Deposition
39. Oatley CW, Nixon WC, Pease RFW, Scanning electron microscopy. Adv
Electronics Electron Phys, 21, p.181–247, 1965.
40. Jinli Yang, Braden D. Siempelkamp, Dianyi Liu, Timothy L. Kelly, ACS nano, 9, 2, p.1955-1963, 2015