| 研究生: |
蔡柏偉 Tsai, Pal-Wei |
|---|---|
| 論文名稱: |
應用微接觸理論模型分析奈米壓痕試驗在小壓深狀態下粗度對微接觸參數之影響 The Microcontact Model Developed for Nanoindentation Tests to Study the Effects of Surface Roughness on Contact Parameters |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 微接觸 、奈米壓痕 |
| 外文關鍵詞: | nanoindertation, contact |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對統計理論之微接觸模型以及奈米壓痕試驗進行研究。利用原子力顯微鏡(Atomic Force Microscope,AFM)掃瞄表面形貌,可獲得表面形貌的高度資料,粗糙度的量測與分析,而計算出統計參數。並利用統計理論將中碳鋼S45C(1045)單一粗糙峰變形行為擴展至光滑平面及曲面對粗糙平面的接觸行為,即可得到受粗糙度效應的接觸負載與接觸面積。結果顯示材料表面受到氧化作用,使得表層之機械性質改變。受到粗糙度效應的影響,結果顯示壓痕試驗所得負載與壓深也跟著受到影響,並且與統計理論之微接觸模型推測之值相當接近。
本論文所模擬之結果,發現中碳鋼粗糙峰的變形行為主要是由彈塑性行為和塑性行為所主導,彈性行為所貢獻的量是很小,這跟試件之機械性質以及表面形貌有關。且施加相同的負載時,粗糙度效應較大的試片其真實接觸面積較小,因此真實接觸壓力較大,這個現象跟以視壓力的觀點或是以巨觀的觀點是不同的。壓深小時,接觸力主要都是曲率半徑較小的粗糙峰所貢獻。壓深大時,接觸力轉變為曲率半徑較大的粗糙峰所貢獻。
The force-depth behavior of initial contact between a Berkovich indenter that is treated as a rigid sphere with radius of 300 nm and the S45C steel specimens prepared to have different surface characteristics was considered. The statistical evaluation of contact force and area was proposed in the basis of Fourier cosine series. The native oxide on the steel surface is observed and measured to have the hardness of 5.5 GPa and modulus of 300 GPa. The force-depth responses obtained by the proposed method revealed good agreement with the experimental results for all the prepared surface characteristics. The evaluated results of the deformation fraction and the contact pressure showed the fully plastic deformation exhibited in the initial contact. Through the proposed method, the dominant radii of summits were evaluated and demonstrated their relation to the indentation depth.
1.Suresh, S.; Giannakopoulos, A. E.; 1999, “Determination
of Elastoplastic Properties by Sharp Indentation”,
Scripta Materialia; 40(10), 1191-1198.
2.B. B. Mandelbrot, 1982, The Fractal Geometry of Nature,
W. H. Freeman, New York.
3.J. J. Gagnepain and C. Roques-Carmes, 1986, “Fractal
Approach to Two-Dimensional and Three-Dimensional Surface
Roughness,” Wear, Vol.109, pp.119-126
4.A. Majumdar and C. L. Tien, 1990, “Fractal and
CharacterizationSimulation of Rough Surfaces,” Wear,
Vol.136, pp.313-327.
5.F. F. Ling, 1987, “Scaling Law for Contoured Length of
Engineering Surface,” Journal of Applied Physics,
Vol.62, pp.2570-2572.
6.A. Majumdar, and B. Bhushan, 1991, “Fractal Model of
Elastic-Plastic Contact Between Rough Surfaces,” ASME
Journal of Tribology, Vol.113, pp.1-11.
7.W. Yan, and K. Komvopoulos, 1998, “Contact Analysis of
Elastic-Plastic Fractal Surfaces,” Journal of Applied
Physics, Vol.84, pp.3617-3624.
8.J. A. Greenwood and J. B. P. Williamson, 1966, “Contact
of Nominally Flat Surface,” Proceedings of Royal
Society of London, Series A, A295, pp.300-319.
9.J. A. Greenwood and J. H. tripp, 1967, “The Elastic
Contact of Rough Spheres,” ASME Journal of Applied
Mechanics, Vol.34, pp.153-159.
10.D. J. Whitehouse and J. F. Archard, 1970, “The
Properties of Random Surfaces of Significance in Their
Contact,” Proceedings of Royal Society of London,
Series A, Vol.316, pp.97-121.
11.T. Hisakado, 1974, “Effects of Surface Roughness on
Contact between Solid Surfaces,” Wear, Vol.28, pp.217-
234.
12.K. L. Johnson, 1989, Contact Mechanics, Cambridge
University Press.
13.W. R. Chang and I. Etsion, D. B. Bogy, 1987, “An
Elastic-Plastic Model for the Contact of Rough
Surfaces,” ASME Journal of Tribology, Vol.120, pp.82- 88.
14.Y. Zhao and D. M. Maietta and L. Chang, 2000, “An
Asperity Microcontact Model Incorporting the Transition
from Elastic Deformation to Fully Plastic Flow,” ASME
Journal of Tribology, Vol.122, pp.86-93.
15.L. Kogut and I. Etsion, 2002, “Elastic-Plastic Contact
Analysis of a Sphere and a Rigid Flat,” ASME Journal
of Applied Mechanics, Vol.69, pp657-662.
16.L. Kogut and I. Etsion, 2003, “A Finite Element Based
Elastic-Plastic Model for the Contact of Rough
Surface,” Tribology Transaction, Vol.46, pp383-390.
17.L. P. Lin and J. F. Lin, 2006, “A New Method for
Elastic-Plastic Contact Analysis of a Deformable Sphere
and a Rigid Flat,” ASME Journl of Tribology, Vol.128,
pp.221-229
18.D. J. Whitehouse, 2003, Handbook of Surface and
Nanometrology, Institute of Physics Publishing,
Bristol, p.99.
19.Fischer-Cripps, A.C.; 2002, Nanoindentation, Springer.
20.D. Tabor, 1951, The Hardness of Metals, Oxford, Oxford
University.
21.B. B. Mandelbrot, 1982, The Fractal Geometry of Nature,
W. H. Freeman, New York.
22.A. Papoulis, 1965, Probability, Random Variables and
Stochastic Process, McGraw- Hill, New York.
23.P. R. Nayak, 1971, “Random process model of rough
surface,” J. Lubr. Technol., Vol.93, pp.398-407.
24.Cheng, Y. T.; Zheng, Z. M.; 1998, “Further analysis of
indentation loading curves: Effects of tip rounding on
mechanical property measurements”, J. Mater. Res., 13
(4), 1059-1064.
25.Malzbender, J.; de With, G.; den Toonder, J.; 2000,
“The P–h2 relationship in indentation”, J. Mater.
Res., 15(5), 1209-1212.
26.Lou, J.; Shrotriya, P.; Buchheit T.; Yang, D.;
Soboyejo, W.O.; 2002, “Nanoindentation study of
plasticity length scale effects in LIGA Ni micro-
electromechanical systems structures”, J. Mater.Res.,
18(3), 719-728.
27.Wei, P.J.; Lin, J.F.; 2007, “A New Method Developed
for Brittle and Ductile Materials to Evaluate
Mechanical Properties of a Lump Specimen in the Use of
Indentation Test,” ASME Journl of Engineering
Materials and Technology, 129, 284-292.
28.Oliver, W. C.; Pharr, G. M.; 1992, “An improved
technique for determining hardness and elastic modulus
using load and displacement sensing indentation
experiments”, Journal of Material Research; 7(4), 1564
-1583.
29.Jayaraman, S., Hahn, G.T., Oliver, W.C., Rubin, C.A.,
Bastias, P.C., 1998, “Determination of Monotonic
Stress-Strain Curve of Hard Materials From Ultra- Low
-Load Indentation Tests,” Int. J. Solids Struct.; 3
5(5), 365–381.
30.Lu, C.J., Bogy, D.B., 1995, “The Effect of Tip Radius
on NanoIndentation Hardness Test,” Int. J. Solids
Struct.; 32(12), 1759-1770.
31.Swadener, J. G., George, E.P., Pharr, G.M., 2002, “The
Correlation of the Indentation Size Effect Measured
With Indenters of Various Shapes,” J. Mech. Phys.
Solids; 50, 681-694.
32.Shu, J.Y., Fleck, N.A., 1998, “The Prediction of a
Size Effect in Micro Indentation,” Int. J. Solids
Struct.; 35(13), 1363-1383.
33.Cheng, Y.T., Zheng, Z.M., 1998, “Further Analysis of
Indentation Loading Curves: Effects of Tip Rounding on
Mechanical Property Measurements,” J. Mater. Res., 1
3(4), 1059-1064.
34.Nix, W.D., Gao, H., 1998, “Indentation Size Effects in
Crystalline Materials: A Law for Strain Gradient
Plasticity,” J. Mech. Phys. Solids, 46(3), 411-425.