簡易檢索 / 詳目顯示

研究生: 蔡柏偉
Tsai, Pal-Wei
論文名稱: 應用微接觸理論模型分析奈米壓痕試驗在小壓深狀態下粗度對微接觸參數之影響
The Microcontact Model Developed for Nanoindentation Tests to Study the Effects of Surface Roughness on Contact Parameters
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 微接觸奈米壓痕
外文關鍵詞: nanoindertation, contact
相關次數: 點閱:57下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對統計理論之微接觸模型以及奈米壓痕試驗進行研究。利用原子力顯微鏡(Atomic Force Microscope,AFM)掃瞄表面形貌,可獲得表面形貌的高度資料,粗糙度的量測與分析,而計算出統計參數。並利用統計理論將中碳鋼S45C(1045)單一粗糙峰變形行為擴展至光滑平面及曲面對粗糙平面的接觸行為,即可得到受粗糙度效應的接觸負載與接觸面積。結果顯示材料表面受到氧化作用,使得表層之機械性質改變。受到粗糙度效應的影響,結果顯示壓痕試驗所得負載與壓深也跟著受到影響,並且與統計理論之微接觸模型推測之值相當接近。
    本論文所模擬之結果,發現中碳鋼粗糙峰的變形行為主要是由彈塑性行為和塑性行為所主導,彈性行為所貢獻的量是很小,這跟試件之機械性質以及表面形貌有關。且施加相同的負載時,粗糙度效應較大的試片其真實接觸面積較小,因此真實接觸壓力較大,這個現象跟以視壓力的觀點或是以巨觀的觀點是不同的。壓深小時,接觸力主要都是曲率半徑較小的粗糙峰所貢獻。壓深大時,接觸力轉變為曲率半徑較大的粗糙峰所貢獻。

    The force-depth behavior of initial contact between a Berkovich indenter that is treated as a rigid sphere with radius of 300 nm and the S45C steel specimens prepared to have different surface characteristics was considered. The statistical evaluation of contact force and area was proposed in the basis of Fourier cosine series. The native oxide on the steel surface is observed and measured to have the hardness of 5.5 GPa and modulus of 300 GPa. The force-depth responses obtained by the proposed method revealed good agreement with the experimental results for all the prepared surface characteristics. The evaluated results of the deformation fraction and the contact pressure showed the fully plastic deformation exhibited in the initial contact. Through the proposed method, the dominant radii of summits were evaluated and demonstrated their relation to the indentation depth.

    中文摘要 І 英文摘要 II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究目的與內容 7 1-4 本文架構 8 第二章 基本理論 12 2-1 單一粗糙峰接觸理論 12 2-1-1 彈性接觸理論 12 2-1-2 臨界變形量及彈塑性接觸理論 13 2-1-3 全塑性變形接觸理論 14 2-2 理論參數之分析 16 2-2-1 功率頻譜密度 16 2-2-2 粗糙峰高度機率密度分佈函數 17 2-2-3 粗糙峰曲率半徑 18 2-2-4 粗糙峰面積密度 19 2-3 統計理論應用於微接觸模型之分析 21 2-4 曲面與平面之微接觸模型 23 第三章 實驗規劃 29 3-1 實驗目的 29 3-2 實驗內容 29 3-3 實驗儀器 30 3-4 實驗步驟 31 3-4-1 試驗材料 31 3-4-2 粗糙表面製備 32 3-4-3 壓痕試驗 32 3-4-4 氧化層之檢測 32 3-4-5 理論架構 33 第四章 結果與討論 39 4-1 自然氧化物的影響 39 4-2 負載-壓深結果受到粗糙度的影響 43 4-3 接觸的變形機構 45 4-4 真實的接觸壓力 47 4-5 接觸變形尺度 50 第五章 結論與未來研究方向 63 5-1 結論 63 5-2 未來發展 65 參考文獻 67 自述 70

    1.Suresh, S.; Giannakopoulos, A. E.; 1999, “Determination
    of Elastoplastic Properties by Sharp Indentation”,
    Scripta Materialia; 40(10), 1191-1198.
    2.B. B. Mandelbrot, 1982, The Fractal Geometry of Nature,
    W. H. Freeman, New York.
    3.J. J. Gagnepain and C. Roques-Carmes, 1986, “Fractal
    Approach to Two-Dimensional and Three-Dimensional Surface
    Roughness,” Wear, Vol.109, pp.119-126
    4.A. Majumdar and C. L. Tien, 1990, “Fractal and
    CharacterizationSimulation of Rough Surfaces,” Wear,
    Vol.136, pp.313-327.
    5.F. F. Ling, 1987, “Scaling Law for Contoured Length of
    Engineering Surface,” Journal of Applied Physics,
    Vol.62, pp.2570-2572.
    6.A. Majumdar, and B. Bhushan, 1991, “Fractal Model of
    Elastic-Plastic Contact Between Rough Surfaces,” ASME
    Journal of Tribology, Vol.113, pp.1-11.
    7.W. Yan, and K. Komvopoulos, 1998, “Contact Analysis of
    Elastic-Plastic Fractal Surfaces,” Journal of Applied
    Physics, Vol.84, pp.3617-3624.
    8.J. A. Greenwood and J. B. P. Williamson, 1966, “Contact
    of Nominally Flat Surface,” Proceedings of Royal
    Society of London, Series A, A295, pp.300-319.
    9.J. A. Greenwood and J. H. tripp, 1967, “The Elastic
    Contact of Rough Spheres,” ASME Journal of Applied
    Mechanics, Vol.34, pp.153-159.
    10.D. J. Whitehouse and J. F. Archard, 1970, “The
    Properties of Random Surfaces of Significance in Their
    Contact,” Proceedings of Royal Society of London,
    Series A, Vol.316, pp.97-121.
    11.T. Hisakado, 1974, “Effects of Surface Roughness on
    Contact between Solid Surfaces,” Wear, Vol.28, pp.217-
    234.
    12.K. L. Johnson, 1989, Contact Mechanics, Cambridge
    University Press.
    13.W. R. Chang and I. Etsion, D. B. Bogy, 1987, “An
    Elastic-Plastic Model for the Contact of Rough
    Surfaces,” ASME Journal of Tribology, Vol.120, pp.82- 88.
    14.Y. Zhao and D. M. Maietta and L. Chang, 2000, “An
    Asperity Microcontact Model Incorporting the Transition
    from Elastic Deformation to Fully Plastic Flow,” ASME
    Journal of Tribology, Vol.122, pp.86-93.
    15.L. Kogut and I. Etsion, 2002, “Elastic-Plastic Contact
    Analysis of a Sphere and a Rigid Flat,” ASME Journal
    of Applied Mechanics, Vol.69, pp657-662.
    16.L. Kogut and I. Etsion, 2003, “A Finite Element Based
    Elastic-Plastic Model for the Contact of Rough
    Surface,” Tribology Transaction, Vol.46, pp383-390.
    17.L. P. Lin and J. F. Lin, 2006, “A New Method for
    Elastic-Plastic Contact Analysis of a Deformable Sphere
    and a Rigid Flat,” ASME Journl of Tribology, Vol.128,
    pp.221-229
    18.D. J. Whitehouse, 2003, Handbook of Surface and
    Nanometrology, Institute of Physics Publishing,
    Bristol, p.99.
    19.Fischer-Cripps, A.C.; 2002, Nanoindentation, Springer.
    20.D. Tabor, 1951, The Hardness of Metals, Oxford, Oxford
    University.
    21.B. B. Mandelbrot, 1982, The Fractal Geometry of Nature,
    W. H. Freeman, New York.
    22.A. Papoulis, 1965, Probability, Random Variables and
    Stochastic Process, McGraw- Hill, New York.
    23.P. R. Nayak, 1971, “Random process model of rough
    surface,” J. Lubr. Technol., Vol.93, pp.398-407.
    24.Cheng, Y. T.; Zheng, Z. M.; 1998, “Further analysis of
    indentation loading curves: Effects of tip rounding on
    mechanical property measurements”, J. Mater. Res., 13
    (4), 1059-1064.
    25.Malzbender, J.; de With, G.; den Toonder, J.; 2000,
    “The P–h2 relationship in indentation”, J. Mater.
    Res., 15(5), 1209-1212.
    26.Lou, J.; Shrotriya, P.; Buchheit T.; Yang, D.;
    Soboyejo, W.O.; 2002, “Nanoindentation study of
    plasticity length scale effects in LIGA Ni micro-
    electromechanical systems structures”, J. Mater.Res.,
    18(3), 719-728.
    27.Wei, P.J.; Lin, J.F.; 2007, “A New Method Developed
    for Brittle and Ductile Materials to Evaluate
    Mechanical Properties of a Lump Specimen in the Use of
    Indentation Test,” ASME Journl of Engineering
    Materials and Technology, 129, 284-292.
    28.Oliver, W. C.; Pharr, G. M.; 1992, “An improved
    technique for determining hardness and elastic modulus
    using load and displacement sensing indentation
    experiments”, Journal of Material Research; 7(4), 1564
    -1583.
    29.Jayaraman, S., Hahn, G.T., Oliver, W.C., Rubin, C.A.,
    Bastias, P.C., 1998, “Determination of Monotonic
    Stress-Strain Curve of Hard Materials From Ultra- Low
    -Load Indentation Tests,” Int. J. Solids Struct.; 3
    5(5), 365–381.
    30.Lu, C.J., Bogy, D.B., 1995, “The Effect of Tip Radius
    on NanoIndentation Hardness Test,” Int. J. Solids
    Struct.; 32(12), 1759-1770.
    31.Swadener, J. G., George, E.P., Pharr, G.M., 2002, “The
    Correlation of the Indentation Size Effect Measured
    With Indenters of Various Shapes,” J. Mech. Phys.
    Solids; 50, 681-694.
    32.Shu, J.Y., Fleck, N.A., 1998, “The Prediction of a
    Size Effect in Micro Indentation,” Int. J. Solids
    Struct.; 35(13), 1363-1383.
    33.Cheng, Y.T., Zheng, Z.M., 1998, “Further Analysis of
    Indentation Loading Curves: Effects of Tip Rounding on
    Mechanical Property Measurements,” J. Mater. Res., 1
    3(4), 1059-1064.
    34.Nix, W.D., Gao, H., 1998, “Indentation Size Effects in
    Crystalline Materials: A Law for Strain Gradient
    Plasticity,” J. Mech. Phys. Solids, 46(3), 411-425.

    下載圖示 校內:2008-08-06公開
    校外:2008-08-06公開
    QR CODE