簡易檢索 / 詳目顯示

研究生: 余梓充
Er, Zi-Chong
論文名稱: 以基因體學分析從油汙汙染土分離出的Alcaligenes屬與Paenibacillus屬細菌
Genomic Analysis of Alcaligenes and Paenibacillus Strains Isolated from Crude Oil-Contaminated Soil
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 39
中文關鍵詞: Alcaligenes ammonioxydansPaenibacillus lactis全基因體定序碳氫化合物降解生物修復
外文關鍵詞: Alcaligenes ammonioxydans, Paenibacillus lactis, whole-genome sequencing, hydrocarbon degradation, bioremediation
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石油作為現代工業中廣泛應用的原料之一,其可能造成的生態汙染也不容小覷。相較傳統物化方法,尋找直接使用碳氫化合物作為本身碳源的微生物,用於分解油汙的生態除汙法,愈發受到青睞。本研究旨在尋找石油污染土壤中,具有相關降解能力的微生物,並透過全基因體定序分析其功能基因。我們從台南市永康區一塊油汙污染土壤,分離出兩株細菌。經由PacBio平臺進行全基因體定序與功能註解,使用Flye演算法重組成基因體讀序,依據Ribosomal Multilocus Sequence Typing (rMLST)鑒定出兩種菌種:Alcaligenes ammonioxydans (Aa)及Paenibacillus lactis (Pl)。定序結果顯示,Aa株擁有豐富的芳香烴與烷烴降解基因,包括1,2-phenylacetyl-CoA epoxidase、phenol hydroxylase、醇/醛脫氫酶與β-氧化相關酶。Pl株則擁有cytochrome P450氧化酶等,與芳香烴及側鏈分解相關的酵素。雖然Pl株相較Aa株降解能力較弱,對後者卻有著潛在的補強功能。在代謝功能方面,兩者具有高度互補性,Aa偏向于環狀芳香烴降解,Pl則可加強對其他類烷烴的氧化能力。系統發育與基因序列比對結果指出,Aa株中的降解基因相較於近緣物種,具有演化新穎性,而Pl株的P450基因則與同屬菌種相似,展現穩定降解特性。整體而言,Aa株與Pl株的聯合應用,有潛力構建高效的石油烴污染生物修復微生物體系,未來可望進一步應用於油汙地生物復育實驗。

    Crude oil is an essential industrial resource, but its leakage poses significant threats to ecosystems. Compared to traditional physical and chemical remediation methods, bioremediation using microorganisms capable of directly metabolizing hydrocarbons offers a more sustainable and efficient approach. This study focuses on the isolation and genomic characterization of such bacteria from petroleum-contaminated soil in Tainan, Taiwan. Whole-genome sequencing was conducted using the PacBio platform, and the genomes were assembled with the Flye algorithm, followed by functional gene annotation. Ribosomal multilocus sequence typing (rMLST) identified two bacterial strains: Alcaligenes ammonioxydans (Aa) and Paenibacillus lactis (Pl). A broad range of hydrocarbon-degrading genes were identified, including those encoding monooxygenases, dehydrogenases, and cytochrome P450 enzymes. The genome of Aa revealed a diverse repertoire of genes responsible for the degradation of both alkanes and aromatic hydrocarbons—such as 1,2-phenylacetyl-CoA epoxidase, phenol hydroxylase, and alcohol/aldehyde dehydrogenases—as well as enzymes involved in β-oxidation pathways. These features indicate a strong capability for aromatic hydrocarbon degradation. In contrast, Pl, though less potent overall, contains cytochrome P450 monooxygenases that support the oxidative breakdown of hydrocarbon side chains, aiding in linear alkane degradation. Functionally, the two strains exhibit strong metabolic complementarity: Aa specializes in the ring-cleaving degradation of aromatic compounds, while Pl enhances aliphatic hydrocarbon oxidation. Comparative genomic analysis revealed that Aa possesses evolutionarily novel degradation genes, while Pl’s P450 genes are conserved among related species, indicating functional stability. Collectively, these findings highlight the potential application of the Aa–Pl microbial consortium in the bioremediation of petroleum-contaminated environments.

    壹、前言 1 貳、材料與方法 4 一、樣本採集 4 二、菌種篩選與初步鑑定 4 三、基因體DNA定序、重組與註解 4 參、結果 6 一、DNA序列品質檢測 6 二、基因體重組與菌種鑑定 6 三、功能預測 6 四、特定基因之序列比較 7 肆、討論 8 一、基因體功能差異與互補性 8 二、親緣比對結果的應用意涵 8 三、應用於生物復育的潛力 9 伍、結論 10 參考文獻 11

    Aas, E., Baussant, T., Balk, L., Liewenborg, B., & Andersen, O. K. (2000). PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquatic toxicology, 51(2), 241-258.
    Aminu, S., Ascandari, A., Laamarti, M., Safdi, N. E. H., El Allali, A., & Daoud, R. (2024). Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. CritiCal reviews in MiCrobiology, 50(5), 805-829.
    Attiogbe, F. K., Glover-Amengor, M., & Nyadziehe, K. T. (2007). Correlating biochemical and chemical oxygen demand of effluents–A case study of selected industries in Kumasi, Ghana. West African Journal of Applied Ecology, 11(1).
    Bagger, F. O., Borgwardt, L., Jespersen, A. S., Hansen, A. R., Bertelsen, B., Kodama, M., & Nielsen, F. C. (2024). Whole genome sequencing in clinical practice. BMC medical genomics, 17(1), 39.
    Bortolaia, V., Kaas, R. S., Ruppe, E., Roberts, M. C., Schwarz, S., Cattoir, V., ... & Aarestrup, F. M. (2020). ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy, 75(12), 3491-3500.
    Brock, T. D., & Freeze, H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. Journal of bacteriology, 98(1), 289-297.
    Brown, E., Dessai, U., McGarry, S., & Gerner-Smidt, P. (2019). Use of whole-genome sequencing for food safety and public health in the United States. Foodborne pathogens and disease, 16(7), 441-450.
    Chien, A., Edgar, D. B., & Trela, J. M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of bacteriology, 127(3), 1550-1557.
    Daane, L. L., Harjono, I., Barns, S. M., Launen, L. A., Palleron, N. J., & Häggblom, M. M. (2002). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. International journal of systematic and evolutionary microbiology, 52(1), 131-139.
    Doll, M., Bryson, A. L., & Palmore, T. N. (2024). Whole genome sequencing applications in hospital epidemiology and infection prevention. Current Infectious Disease Reports, 26(4), 115-121.
    Dyksterhouse, S. E., Gray, J. P., Herwig, R. P., Lara, J. C., & Staley, J. T. (1995). Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. International Journal of Systematic and Evolutionary Microbiology, 45(1), 116-123.
    Golyshin, P. N., Chernikova, T. N., Abraham, W. R., Lünsdorf, H., Timmis, K. N., & Yakimov, M. M. (2002). Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. International journal of systematic and evolutionary microbiology, 52(3), 901-911.
    Harayama, S., Kishira, H., Kasai, Y., & Shutsubo, K. (1999). Petroleum biodegradation in marine environments. Journal of molecular microbiology and biotechnology, 1(1), 63-70.
    Hebert, P. D., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic biology, 54(5), 852-859.
    Hirsch, P. R., Mauchline, T. H., & Clark, I. M. (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biology and Biochemistry, 42(6), 878-887.
    Incardona, J. P., Collier, T. K., & Scholz, N. L. (2004). Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and applied pharmacology, 196(2), 191-205.
    Jolley, K. A., Bliss, C. M., Bennett, J. S., Bratcher, H. B., Brehony, C., Colles, F. M., ... & Maiden, M. C. (2012). Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology, 158(4), 1005-1015.
    Jones, D. M., Head, I. M., Gray, N. D., Adams, J. J., Rowan, A. K., Aitken, C. M., ... & Larter, S. R. (2008). Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 451(7175), 176-180.
    Khan, R. A., & Ryan, P. (1991). Long term effects of crude oil on common murres (Uria aalge) following rehabilitation. Bulletin of Environmental Contamination and Toxicology, 46, 216-222.
    Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452.
    Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone reads using repeat graphs. Nature biotechnology, 37(5), 540-546.
    Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome biology, 5, 1-9.
    Ma, M., Zheng, L., Yin, X., Gao, W., Han, B., Li, Q., ... & Yang, H. (2021). Reconstruction and evaluation of oil-degrading consortia isolated from sediments of hydrothermal vents in the South Mid-Atlantic Ridge. Scientific reports, 11(1), 1456.
    McDermott, P. F., Tyson, G. H., Kabera, C., Chen, Y., Li, C., Folster, J. P., ... & Zhao, S. (2016). Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrobial agents and chemotherapy, 60(9), 5515-5520.
    Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2015). Screening the toxicity and biodegradability of petroleum hydrocarbons by a rapid colorimetric method. Archives of environmental contamination and toxicology, 68, 342-353.
    Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., ... & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic acids research, 42(D1), D206-D214.
    Perry, J. J. (1980). Oil in the biosphere. Jour. Environ. Toxicol, 2, 209-220.
    Pongsilp, N., & Nimnoi, P. (2022). Paenibacillus sp. strain OL15 immobilized in agar as a potential bioremediator for waste lubricating oil-contaminated soils and insights into soil bacterial communities affected by inoculations of the strain and environmental factors. Biology, 11(5), 727.
    Rana, B., Chandola, R., Sanwal, P., & Joshi, G. K. (2024). Unveiling the microbial communities and metabolic pathways of Keem, a traditional starter culture, through whole-genome sequencing. Scientific Reports, 14(1), 4031.
    Rosselló-Mora, R., & Amann, R. (2001). The species concept for prokaryotes. FEMS microbiology reviews, 25(1), 39-67.
    Sumathi, K., & Manian, R. (2024). Degradation and inhibition kinetics of phenanthrene by Alcaligenes ammonioxydans,[VITRPS2] strain isolated from petroleum-contaminated soil. Discover Applied Sciences, 6(5), 255.
    Van Beilen, J. B., & Funhoff, E. G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Applied microbiology and biotechnology, 74, 13-21.
    Venosa, A. D., & Zhu, X. (2003). Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Science & Technology Bulletin, 8(2), 163-178.
    Yakimov, M. M., Giuliano, L., Gentile, G., Crisafi, E., Chernikova, T. N., Abraham, W. R., ... & Golyshin, P. N. (2003). Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. International journal of systematic and evolutionary microbiology, 53(3), 779-785.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE