簡易檢索 / 詳目顯示

研究生: 許配慈
Hsu, Pei-Tzu
論文名稱: 二維平行振動板內乾燥顆粒物質能量耗散特性之研究
On energy dissipation characteristics of a dry granular material in 2-D oscillating parallel plates
指導教授: 方中
Fang, Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 114
中文關鍵詞: 顆粒物質能量耗散振動板
外文關鍵詞: granular matter, energy dissipation, oscillating plate
相關次數: 點閱:80下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討顆粒物質於能量耗散特性之評估,模擬尺寸與性質相異之顆粒置於兩平行振動板內,於下平板輸入水平向振幅及頻率,經由振動後追蹤上平板輸出之振幅及頻率來證明顆粒物質之能量耗散特性。數值模擬結果顯示,上平板水平向主要振動頻率皆小於1Hz,代表週期較長的長波運動;垂直向亦同。能量結果顯示,上平板總能量遠小於下平板之能量,且能量消耗比例可達接近95%。選擇顆粒愈重、愈軟之材質,能量耗散比例愈佳。

    The focus of the present study is on the energy dissipation characteristics of a dry granular material. A sample of dry granular matter is placed inside two parallel oscillating plates, with the lower plate excited harmonically with prescribed amplitude and frequency in the horizontal direction, while the oscillating motion of the upper plate is traced for its amplitude and frequency to identify the energy dissipation characteristics of the granular matter.
    Numerical simulations show that the dominated oscillating frequencies in the horizontal direction of the upper plate are always smaller than 1Hz with longer amplitudes, representing long-wave horizontal oscillations of the upper plate. The same tendency displays for the vertical motions of the upper plate. Calculations show that the mechanical energy of the upper plate is much lower than that of the lower plate, and the energy dissipation ratio is nearly 95%. The heavier and softer the granular matters are, the higher the energy dissipation ratio will be.

    摘要………………………………………………………………i Abstract……………………………………………………………………………………………ii 誌謝………………………………………………………………iii 目錄………………………………………………………………iv 圖目錄……………………………………………………………vi 表目錄……………………………………………………………x 符號說明…………………………………………………………xi 第一章 顆粒物質導論……………………………………………1   1.1 顆粒物質簡介…………………………………………1   1.2 顆粒物質基本巨觀物理特性…………………………2   1.3 研究動機與目的………………………………………11   1.4 論文架構………………………………………………11 第二章 基礎隔震簡介……………………………………………13   2.1 制震與消能概述………………………………………13   2.2 隔震技術的研究歷史…………………………………14   2.3 隔震裝置種類…………………………………………15    2.3.1 單純支撐建築物直垂荷重隔震體類……………15    2.3.2 消減地震水平力之消能隔震體類………………18 第三章 顆粒碰撞模型與理論計算分析…………………………21   3.1 顆粒相關研究課題……………………………………21   3.2 研究方法………………………………………………23   3.3 顆粒搜尋演算法………………………………………24   3.4 碰撞理論推導…………………………………………29   3.5 速度合成法……………………………………………37    3.5.1 理論推導…………………………………………37    3.5.2 非線性方法與程序………………………………40 第四章 數值模擬結果討論………………………………………44   4.1 問題定義………………………………………………44   4.2 因次分析………………………………………………46 4.3 程式模擬設定及流程………………………………………51   4.4 顆粒運動數據…………………………………………59   4.5 輸出能量及消能比例計算……………………………62   4.6 結果討論………………………………………………66 第五章 結論與未來展望…………………………………………68   5.1 結論……………………………………………………68   5.2 未來展望………………………………………………69 參考文獻…………………………………………………………71 附錄A 上顆粒平板振動反應圖…………………………………74 簡歷………………………………………………………………114

    [1]道渣http://news.chineserailways.com/Html/30/201009/20100910143456.html (訪問時間2012/06/12)
    [2]製藥粉末http://www.tech-power.cn/ (訪問時間2012/06/12)
    [3]孫其誠,王光謙,「顆粒物質力學導論」,科學出版社,北京(2009)
    [4]方中,國立成功大學土木工程學系,顆力動力學課程投影片講義(2007)
    [5]土壤液化 http://en.wikipedia.org/wiki/File:Liquefaction_at_Niigata.JPG (訪問時間2012/06/26)
    [6]顆粒對流現象http://pof.tnw.utwente.nl/3_research/3_g_leidenfrost.html (訪問時間2012/06/13)
    [7]Hill, K. M., Gioia G. Gioia, Amaravadi, D., “Radial segregation patterns in rotating granular mixtures:Waviness selection,” Phys. Rev. Lett. 93(22):224301.(2004)
    [8]Hill, K. M., Caprihan, A., Kakalios, J., “Axial segregation of granular media rotated in a drum mixer: Pattern evolution,” Phys. Rev. E, Vol. 56, pp.4386-4393(1997)
    [9]三維軸向分離實驗模擬圖http://www.chem.scphys.kyoto-u.ac.jp/nonnonWWW/b8/07b/inoue/inoue.pdf (訪問時間:2012/06/14)
    [10]粗糙砂粒http://www.nipic.com/show/1/65/d3d3375e3abebd4e.html (訪問時間2012/06/14)
    [11]蔡益超、詹添全,「建築物隔震設計與施工」,財團法人中華建築中心,台北(2005)
    [12]Saiful Islam, A. B. M., “Simplified design guidelines for seismic base isolation in multi-story buildings for Bangladesh National Building Code(BNBC),”International Journal of the Physical Sciences, pp.5467-5486(2011)
    [13]Baz, A., Ro, J., “Vibration control of plates with active constrained layer damping,” Smart Master. Structure, UK, pp.272-280(1996)
    [14]Soong, T, T., Dargush, G. F., “Passive Energy Dissipation Systems in Structural Engineering,” John Wiley and Sons Ltd, England,(1997)
    [15]Aiken, I. D., Nims, D. K., “Comparative study of four passive energy dissipation systems,” Bulletin of The New Zealand National Society for Earthquake Engineering, pp.175-192(1992)
    [16]江支川,「隔震技術入門:二十一世紀建築結構的新技術」,田園城市文化事業有限公司,台北(2001)
    [17]Robinson, H. W., Cousins, J. W., “Lead dampers for base isolation,” Proceeding s of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan,(1988)
    [18]鉛心橡膠隔震墊結構圖http://www.winhor-bearing.com.tw/index1-1.htm (訪問時間2012/06/14)
    [19]鉛心橡膠隔震墊實際圖http://www.0318xs.cn/zhizuo/03.htm (訪問時間2012/06/14)
    [20]Naeim, F., Kelly, M. J., “Design Seismic Isolated Structures,” John Wiley and Sons, Inc. United States of America, pp.52-58(1999)
    [21]滑動隔震體http://www.townwin-e.com/product1.html (訪問時間2012/06/13)
    [22]花瓣環鋼消能隔震體http://www.ctsee.org.tw/結構控制實例/慈濟/新店慈濟.html (訪問時間2012/06/13)
    [23]油壓式消能隔震體http://okok.org/forum/viewthread.php?tid=212392 (訪問時間2012/06/13)
    [24]Cundall, P. A., Strack,O. D. L., “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65 (1979)
    [25]Hubbard, P. M., “Approximating Polyhedra with Spheres for Time-Critical Collision Detection,” A. C. M. Transactions on Graphics, Vol. 15, No. 3, pp. 179-210 (1996)
    [26]林昇鴻,「卵形顆粒介質運動之數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢(2006)
    [27]Matuttis, H. G., Luding, S. Herrmann, H. J., “Discrete Element Simulation of Dense Packings and Heaps Made of Spherical and Non-spherical Particles,” Powder Technology, Vol. 109, pp. 278-292 (2000)
    [28]Watanabe, H., “Critical Rotation Speed for Ball-Milling,” Powder Technology, Vol. 104, pp.95-99 (1999)
    [29]Asakura, K., Harada, S. , Funayama, T., Nakajima, I., “Simulation of Descending Particles in Water By the Distinct Element Method,” Powder Technology, Vol. 94, pp.195-200 (1997)
    [30]Zhang, D., Whiten, W. J., “A New Calculation Method for Particle Motion in Tangential Direction in Discrete Element Simulations,” Powder Technology, Vol. 102, pp. 235-243 (1999)
    [31]Briscoe, Brian J., “Interaction Laws and the Rheology of Assemblies,” Powder Technology, Vol. 88, pp.255-259 (1996)
    [32]Gundepudi, M. K., Sankar, B. V., Mecholsky, J. J., Jr., Clupper,D. C., “Stress analysis of Brittle Spheres Under Multiaxial Loading,” Powder Technology, Vol. 94, pp.153-161 (1997)
    [33]Clement, E., Vanel, L., Rajchenbach, J., Duran, J., “Pattern Formation in a Vibrated Granular Layer,” Phys. Rev. Lett., Vol. 53, No. 3,pp.2972-2975 (1996)
    [34]Liffman, K., Metcalfe, G., Cleary, P., “Granular Convection and Transport due to Horizontal Shaking,” Phys. Rev. Lett. Vol. 79,pp4574-4576(1997)
    [35]Hogue, C., Newland, D., “Efficient Computer Simulation of Moving Granular Particles,” Powder Technology, Vol. 78, pp.51-66 (1994)
    [36]Hu, N., “A Solution Method for Dynamic Contact Problems,” Computers and Structures, Vol. 63, No. 6, pp. 595-602 (1997)
    [37]Kim, J. S., Kim, J. Y., Lee, S. R., “Analysis of Soil Nailed Earth Slope by Discrete Element Method,” Computers and Geotechnics, Vol. 20, No. 1, pp.1-14 (1997)
    [38]Zhang, D., Whiten, W. J., “The Calculation of Contact Forces Between Particles Using Spring and Damping Models,” Powder Technology, Vol. 88, pp. 59-64 (1996)
    [39]陳泰安,「球形顆粒系統之碰撞分析及演算法」,博士論文,國立中央大學土木工程學系,中壢(2001)
    [40]Tsuji, Y., Tanaka, T., Ishida, T., “Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe,” Powder Technology, Vol. 71, pp. 239-250 (1992)
    [41]Zhang, D., Whiten, W. J., “An Efficient Calculation Method for Particle Motion in Discrete Element Simulations,” Powder Technology, Vol. 98, pp. 223-230 (1998)

    下載圖示 校內:2013-08-22公開
    校外:2013-08-22公開
    QR CODE