| 研究生: |
賴致廷 Lai, Chih-Ting |
|---|---|
| 論文名稱: |
鎂添加對SS400低碳鋼於高溫下沃斯田鐵晶粒成長之影響 Effect of Mg Addition on the Grain Growth Behavior of Austenite in SS400 |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 低碳鋼 、鎂含量 、沃斯田鐵晶粒成長 、氧化物冶金 |
| 外文關鍵詞: | low carbon steel, magnesium content, austenite grain growth, oxide metallurgy |
| 相關次數: | 點閱:143 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低碳鋼在銲接時,於銲處周圍的粗晶熱影響區會產生沃斯田鐵晶粒成長的現象,為了解決這個問題,添加鎂於低碳鋼中,可有助於阻止晶粒成長。本研究探討添加不同鎂含量的低碳鋼SS400在高溫下晶粒成長的影響,使用晶粒成長公式預測不同熱處理溫度及時間下沃斯田鐵晶粒尺寸。
本研究將試片使用高溫共軛焦雷射掃描顯微鏡(HT-CLSM)做熱處理實驗,並使用光學顯微鏡分析軟體分析高溫沃斯田鐵晶粒,取樣至少300個晶粒。接著運用統計學的概念,求得出平均數、中位數、眾數3個不同意義的特徵值。本研究將3個晶粒成長公式的模型以及3個平均值逐一比較,最終選擇眾數作為晶粒尺寸,並採用新發展的晶粒成長公式。接著,本研究使用晶粒尺寸、晶粒成長公式求得出晶粒成長速率及晶界遷移速率。
實驗結果顯示,晶粒成長公式中的活化能Q值,以0 ppm Mg最大,1.6 ppm Mg最小,隨著鎂含量的增加,Q值也會隨之提升。在相同溫度下,晶粒尺寸由大到小依序為0ppm、7.7ppm、1.6ppm、25ppm Mg SS400。在1200°C下,不含鎂的SS400與含鎂的SS400的晶粒成長速率(持溫20分鐘)與晶界遷移速率差異不大;隨著溫度升高,兩者的差異漸趨明顯,晶粒成長速率(持20分鐘)及晶界遷移速率由快到慢依序為0ppm、7.7ppm、1.6ppm、25ppm Mg SS400。
For the large heat input welding technique using heat input over 50kJ/cm, as increasing the heat input energy, coarsening in austenite grains will be enhanced in the heat-affected zone (HAZ) during welding and coarse grains have detrimental effect on impact toughness of weldments. Thus, Mizoguchi et al. firstly proposed oxide inclusions for improving HAZ impact toughness in the case of large heat input welding. Titan and magnesium oxides can be called the “first” and “second” generation of oxide inclusions for acicular ferrite (AF) formation in terms of development time, respectively.
In this study we mainly investigated on the effect of Mg addition on the austenite grain growth in low carbon steel of SS400 using thermal etching. Furthermore, in-situ observations of austenite grain growth were also performed with a high-temperature confocal scanning laser microscope (HT-CSLM). The results show that the austenite grain size and grain growth rate decrease with the increase of magnesium content.
1. Z. Śloderbach and J. Pająk, Determination of Ranges of Components of Heat Affected Zone Including Changes of Structure / Określenie Zakresów Składowych Strefy Wpływu Ciepła Uwzględniając Zmiany Struktury, in Archives of Metallurgy and Materials. 2015. p. 2607.
2. A.K. Kojima, A.; Uemori, R.; Minagawa, M.; Hoshino, M.; Nakashima, T.; Ishida, K.; Yasui, H,"Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles",NIPPON STEEL TECHNICAL REPORT,50(2004)2-5
3. K. Zhu, J. Yang, R.-Z. Wang, and Z.-G. Yang,"Effect of Mg Addition on Inhibiting Austenite Grain Growth in Heat Affected Zones of Ti-Bearing Low Carbon Steels",Journal of Iron and Steel Research, International,18(2011)60-64
4. K. Zhu and Z.-G. Yang,"Effect of Mg Addition on the Ferrite Grain Boundaries Misorientation in HAZ of Low Carbon Steels",Journal of Materials Science & Technology,27(2011)252-256
5. K. Zhu and Z.-G. Yang,"Effect of Magnesium on the Austenite Grain Growth of the Heat-Affected Zone in Low-Carbon High-Strength Steels",Metallurgical and Materials Transactions A,42(2011)2207-2213
6. J. Moravec,"Determination of the grain growth kinetics as a base parameter for numerical simulation demand",MM Science Journal,(2015)649
7. V.B. Oliveira, H.R.Z. Sandim, and D. Raabe,"Abnormal grain growth in Eurofer-97 steel in the ferrite phase field",Journal of Nuclear Materials,485(2017)23-38
8. R. Narayanan, V. Kalyanaraman, A.R. Santhakumar, S.Seetharaman, S.R.S. Kumar, S.A. Jayachandran, and R. Senthil, Historical development and characteristics of structural steels.
9. M. Niikura, M. Fujioka, Y. Adachi, A. Matsukura, T. Yokota, Y. Shirota, and Y. Hagiwara,"New concepts for ultra refinement of grain size in Super Metal Project",Journal of Materials Processing Technology,117(2001)341-346
10. C. Miki, K. Homma, and T. Tominaga,"High strength and high performance steels and their use in bridge structures",Journal of Constructional Steel Research,58(2002)3-20
11. E.O. Hall,"The Deformation and Ageing of Mild Steel: III Discussion of Results",Proceedings of the Physical Society. Section B,64(1951)747
12. N.J. Petch,"The Cleavage Strength of Polycrystals",J. Iron Steel Inst.,174(1953)25-28
13. X.-B. Li, Y. Min, Z. Yu, C.-J. Liu, and M.-F. Jiang,"Effect of Mg Addition on Nucleation of Intra-granular Acicular Ferrite in Al-killed Low Carbon Steel",Journal of Iron and Steel Research, International,23(2016)415-421
14. S. Ogibayashi,"Advance in Technology of Oxide Metallurgy",NIPPON STEEL TECHNICAL REPORT,61(1994)70-76
15. T. Sutoki,"On the mechanism of crystal growth by annealing",Scientific Reports of Tohoku Imperial University,17(1928)857-876
16. D. Harker and E.R. Parker,"Grain shape and grain growth",Trans. Am. Soc. Metals,34(1945)156-195
17. J.E. Burke and D. Turnbull,"Recrystallization and grain growth",Progress in Metal Physics,3(1952)220-292
18. C.S. Smith,"Grains, Phases, and Interfaces: An Interpretation of Microstructure",Transactions of the Metallurgical Society of AIME,175(1948)15-51
19. K. Weman, 19 - The weldability of steel, in Welding Processes Handbook (Second edition). 2012, Woodhead Publishing. p. 191-206.
20. H. Qiu, H. Mori, M. Enoki, and T. Kishi,"Fracture mechanism and toughness of the welding heat-affected zone in structural steel under static and dynamic loading",Metallurgical and Materials Transactions A,31(2000)2785-2791
21. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby,"Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel",Materials Science and Technology,28(2012)1261-1268
22. J. Hu, L.-X. Du, J.-J. Wang, H. Xie, C.-R. Gao, and R.D.K. Misra,"High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel",Materials Science and Engineering: A,590(2014)323-328
23. 林新智, 洪榮德, 連聰賢, 王伯政, 施柏仰, and 林昆明,"SM490A與SS400結構用鋼異質銲接之特性研究",金屬熱處理111期,(2011)
24. 羅新傑,"結構用鋼胚中介在物之研究",成功大學材料科學及工程學系碩士論文,(2012)
25. K. Huang and R.E. Logé, Zener Pinning, in Reference Module in Materials Science and Materials Engineering. 2016, Elsevier.
26. N.A. Haroun,"Theory of inclusion controlled grain growth",Journal of Materials Science,15(1980)2816-2822
27. T. Nishizawa, I. Ohnuma, and K. Ishida,"Examination of the Zener Relationship between Grain Size and Particle Dispersion",Materials Transactions, JIM,38(1997)950-956
28. P.A. Manohar, M. Ferry, and T. Chandra,"Five Decades of the Zener Equation",ISIJ International,38(1998)913-924
29. C.H. Wörner and P.M. Hazzledine,"Grain growth stagnation by inclusions or pores",JOM,44(1992)16-20
30. S. Zhang, N. Hattori, M. Enomoto, and T. Tarui,"Ferrite Nucleation at Ceramic/Austenite Interfaces",ISIJ International,36(1996)1301-1309
31. Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto,"Improvement in HAZ Toughness of Steel by TiN-MnS Addition",ISIJ International,34(1994)829-835
32. Z.-M. Cui, L.-G. Zhu, Y.-L. Li, Q.-J. Zhang, C.-L. Yan, and W.-L. Mo,"Relationship between Crystal Structure of Inclusions and Formation of Acicular Ferrites",Journal of Iron and Steel Research, International,23(2016)586-592
33. I. Madariaga, I. Gutiérrez, C. Garcı́a-de Andrés, and C. Capdevila,"Acicular ferrite formation in a medium carbon steel with a two stage continuous cooling",Scripta Materialia,41(1999)229-235
34. D. Zhang, H. Terasaki, and Y. Komizo,"In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C–Mn steel",Acta Materialia,58(2010)1369-1378
35. F.J. Barbaro, P. Krauklis, and K.E. Easterling,"Formation of acicular ferrite at oxide particles in steels",Materials Science and Technology,5(1989)1057-1068
36. S. St-Laurent and G. L'Espérance,"Effects of chemistry, density and size distribution of inclusions on the nucleation of acicular ferrite of CMn steel shielded-metal-arc-welding weldments",Materials Science and Engineering: A,149(1992)203-216
37. J.-L. Lee and Y.-T. Pan,"Effect of sulfur content on the microstructure and toughness of simulated Heat-Affected zone in Ti-Killed steels",Metallurgical Transactions A,24(1993)1399-1408
38. J.-L. Lee,"Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments",Acta Metallurgica et Materialia,42(1994)3291-3298
39. S.F. Medina, M. Gómez, and L. Rancel,"Grain refinement by intragranular nucleation of ferrite in a high nitrogen content vanadium microalloyed steel",Scripta Materialia,58(2008)1110-1113
40. M. Díaz, I. Madariaga, J.M. Rodriguez-Ibabe, and I. Gutierrez,"Improvement of mechanical properties in structural steels by development of acicular ferrite microstructures",Journal of Constructional Steel Research,46(1998)413-414
41. S. Kanazawa, A. Nakashima, K. Okamoto, and K. Kanaya,"Improved Toughness of Weld Fussion Zone by Fine TiN Particles and Development of a Steel for Large Heat Input Welding",Tetsu-to-Hagane,61(1975)2589-2603
42. J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, and D.N. Lee,"Ferrite nucleation potency of non-metallic inclusions in medium carbon steels",Acta Materialia,49(2001)2115-2122
43. T.N. Baker,"Role of zirconium in microalloyed steels: a review",Materials Science and Technology,31(2015)265-294
44. S. Taniguchi, Shigesato,G "Refinement Mechanism of Heat-Affected Zone Microstructures on TiO Steels",Nippon steel & Sumitomo Metal technical report,110(2015)105-109
45. J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, and D.N. Lee,"Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel",Acta Materialia,47(1999)2751-2760
46. Z.-H. Xiong, S.-L. Liu, X.-M. Wang, C.-J. Shang, and R.D.K. Misra,"Relationship between crystallographic structure of the Ti2O3/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness",Materials Characterization,106(2015)232-239
47. K. Yamamoto, T. Hasegawa, and J.-i. Takamura,"Effect of Boron on Intra-granular Ferrite Formation in Ti-Oxide Bearing Steels",ISIJ International,36(1996)80-86
48. F. Chai, H. Su, C.-F. Yang, and D.-M. Xue,"Nucleation Behavior Analysis of Intragranular Acicular Ferrite in a Ti-killed C-Mn Steel",Journal of Iron and Steel Research, International,21(2014)369-374
49. H.S. Kim, C.-H. Chang, and H.-G. Lee,"Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels",Scripta Materialia,53(2005)1253-1258
50. F. Chai, C.-F. Yang, H. Su, Y.-Q. Zhang, and Z. Xu,"Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone",Journal of Iron and Steel Research, International,16(2009)69-74
51. C. Garcı́a de Andrés, M.J. Bartolomé, C. Capdevila, D. San Martı́n, F.G. Caballero, and V. López,"Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels",Materials Characterization,46(2001)389-398
52. C. Garcı́a de Andrés, F.G. Caballero, C. Capdevila, and D. San Martı́n,"Revealing austenite grain boundaries by thermal etching: advantages and disadvantages",Materials Characterization,49(2002)121-127
53. W. Zhang, P. Sachenko, and I. Gladwell,"Thermal grain boundary grooving with anisotropic surface free energies",Acta Materialia,52(2004)107-116
54. E. Rabkin, L. Klinger, and V. Semenov,"Grain boundary grooving at the singular surfaces",Acta Materialia,48(2000)1533-1540
55. E. Rabkin, L. Klinger, T. Izyumova, A. Berner, and V. Semenov,"Grain boundary grooving with simultaneous grain boundary sliding in Ni-rich NiAl",Acta Materialia,49(2001)1429-1438
56. G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals : Thermodynamics, Kinetics, Applications. Second ed. 2009: CRC Press.
57. C.S. Smith,"Grain Shapes and Other Metallurgical Applications of Topology",Metallography, Microstructure, and Analysis,4(2015)543-567
58. A. Giumelli, Austenite grain growth kinetics and the grain size distribution. 1995.
59. VL2000DX-SVF17SP產品介紹",Yonekura,
60. B.-N. Kim, K. Hiraga, and K. Morita,"Kinetics of Normal Grain Growth Depending on the Size Distribution of Small Grains",MATERIALS TRANSACTIONS,44(2003)2239-2244
61. P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore,"Grain Growth Predictions in Microalloyed Steels",ISIJ International,36(1996)194-200
62. S.C. Wang,"The effect of titanium and nitrogen contents on the austenite grain coarsening temperature",Journal of Materials Science,24(1989)105-109
63. S.-J. Lee,"Predictive Model for Austenite Grain Growth during Reheating of Alloy Steels",ISIJ International,53(2013)1902-1904
64. G.-W. Yang, X.-J. Sun, Q.-L. Yong, Z.-D. Li, and X.-X. Li,"Austenite Grain Refinement and Isothermal Growth Behavior in a Low Carbon Vanadium Microalloyed Steel",Journal of Iron and Steel Research, International,21(2014)757-764
65. S. Zajac, T. Siwecki, B. Hutchinson, and M. Attlegård,"Recrystallization controlled rolling and accelerated cooling for high strength and toughness in V-Ti-N steels",Metallurgical Transactions A,22(1991)2681-2694
66. L.J. Cuddy and J.C. Raley,"Austenite grain coarsening in microalloyed steels",Metallurgical Transactions A,14(1983)1989-1995
67. Y. Futamura, T. Tsuchiyama, and S. Takaki,"Effect of Cu Addition on Phase Transformation and Microstructure in 9 mass% Cr Martensitic Steels",Tetsu-to-Hagane,85(1999)697-702
68. Y. Takahama and J. Sietsma,"Mobility Analysis of the Austenite to Ferrite Transformation in Nb Microalloyed Steel by Phase Field Modelling",ISIJ International,48(2008)512-517
69. B.B. Vynokur,"Influence of alloying on the free energy of austenitic grain boundaries in steel",Materials Science,32(1996)448-455
70. I. Basu, M. Chen, M. Loeck, T. Al-Samman, and D.A. Molodov,"Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements",Materials Characterization,117(2016)99-112