簡易檢索 / 詳目顯示

研究生: 郭屈原
Kuo, Qu-yuan
論文名稱: 以分子動力學模擬探討奈米碳管及相關複合材料之力學性質及挫屈行為
Mechanical Properties and Buckling of Carbon Nanotubes and Related Composites via Molecular Dynamics Simulation
指導教授: 王雲哲
Wang, Yun-che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 89
中文關鍵詞: 楊氏係數挫屈奈米碳管複合材料分子動力學模擬
外文關鍵詞: buckling, molecular dynamics simulation, carbon nanotube composites, Young’s modulus
相關次數: 點閱:119下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以分子動力學的模擬方法,對奈米碳管及其相關複合材料進行壓縮以及拉伸模擬,並探討其線性與非線性力學行為。本研究以控制模擬試體之位移上下端邊界層的位移,以固定其速率,分析兩端固定之奈米試體,在承受單軸向的壓縮以及拉伸位移負荷之下,所呈現出來的力學性質與挫屈行為。藉由模擬計算所得之應變與應變能關係圖中,觀察此力學系統之能量變化;由能量不連續處,探討發生挫屈時的臨界應變;並利用於平衡處之能量曲率來求得楊氏係數。此外,分子動力學模擬之優勢在於可分析非常微小的時間尺度之下的各原子之間的暫態行為,本研究利用此項優勢,詳細呈現奈米碳管複合材料在承受單軸向外力時,其動態行為的表現,以了解奈米碳管內含物與基材之間的原子-原子間交互及其牽引作用。
    在第二章中,單壁奈米碳管發生挫屈時的尺度效應在本章節被討論。研究結果發現,奈米碳管的管壁厚度大約為0.066奈米,且可利用巨觀的薄殼理論來做預測。此外,管徑較小的奈米碳管具有較大的挫屈應變,此現象與尤拉實心柱迥異。
      在第三章中,不同細長比(SR)對於多壁奈米碳管發生挫屈時的機械性質被討論於此。研究結果顯示,在SR固定的條件下,SR較小的奈米碳管,其挫曲型態與圓柱型連體薄殼(continuum shell)之挫曲變形特徵類似;而SR較大的奈米碳管,則呈現尤拉柱(Eular column)的挫曲特徵。同時亦發現,管徑較小的奈米碳管有較大的挫曲強度。
      在第四章中,多壁奈米碳管的楊氏係數可以利用軸向壓縮以及拉伸的試驗方法求得。其求得的楊氏係數分佈大約在0.85到1.16 TPa之間,同時亦發現其挫曲強度及楊氏係數皆是取決於最外層的碳管管徑。此外,模擬條件時所設定之邊界固定層數亦會影響模擬結果,當上下層各固定2、3或是4層原子時,其能量曲線是相當一致的,但若只固定一層時,其所計算出的結果便會略低於此,原因為當邊界只固定一層時,並無法有效的模擬嵌入型邊界條件。
      在第五章中,探討了奈米碳管複合材料的問題,本章節以一單壁奈米碳管鑲嵌於鋁基作為其奈米碳管複合材料,並對其受軸向外力時的挫屈行為加以分析討論。其結果顯示,當CNT在鋁基內部從挫屈型態欲回覆到直立柱型態時,其能量曲線並未有一較大的落差,而是一平滑的曲線,此和單一根單壁奈米碳管在做拉伸時的能量有顯些不同。而當CNT在鋁基內部從直立柱型態到挫屈變形時,所需的應變會比單一根單壁奈米碳管增大約14.5%。

    This thesis adopts the molecular dynamics (MD) simulation methods to simulate the mechanical behavior of carbon nanotubes (CNTs) and CNT-composites. Specifically, buckling and Young’s modulus of the material systems are discussed by simulation. Through displacement control the upper and lower boundary layers, the specimens are compressed or stretched uniaxially, and their mechanical properties are analyzed. The energy jumps of energy-strain curves from the simulation indicate the occurrence of buckling, and therefore buckling strains can be defined by the jump. The calculation of Young’s modulus would be carried out through the energy curvature around zero strain. Moreover, we observe and study the transient behavior of atoms at atomic time scales.
    In Chapter 2, the scaling phenomena of the buckling of single-walled carbon nanotubes are investigated. It is found that the buckling strain of CNTs, with the wall thickness of 0.066 nm, can be predicted by a model of macroscopic shells for various lengths with a given slenderness ratio. Faurthermore, smaller nanotubes exhibit larger buckling strain, i.e. high buckling-resistance, completely different from an Euler solid column.
    In Chapter 3, this discussed the mechanical buckling of multi-walled carbon nanotubes under the different slenderness ratio. The results shows, under constant ratio of slenderness, the CNTs with small SR behave like a continuum shell object. For large SR’s, multi-walled CNTs exhibit the characteristics of the Euler columns. In addition, smaller nanotubes possess higher buckling-resistance. The buckling strength of multiwalled nanotubes is controlled by the size of their outermost shell.
    In Chapter 4, the Young’s modulus of a multi-walled carbon nanotube (MWNT) is studied. From results of MD simulations of uniaxial loading and unloading on a MWNT, the Young’s modulus of a MWNT is about the range between 0.85 to 1.16 TPa. Moreover, the Young’s modulus of a MWNT is also depended on the outer SWNT type. Besides, the number of the fixed end layers will influence the simulation results. The energy curve of fixed one layer has a bit less lower than fixed two, three, or four layers on each the top and bottom.
    In Chapter 5, study of buckling shapes of a single-walled carbon nanotube reinforced aluminum composite. The results show that when the embedded single-walled CNT deforms from the buckled to straight states, the total energy curve shows no discontinuities, indicating the energy release in this regard is continuous up to the C0 function. However, when the single-walled CNT deforms from the straight to buckled states, the corresponding energy jump is about 14.5%. The amount of energy being released or absorbed in the process indicates the applicability of using the CNTs for building novel composites.

    摘 要 I ABSTRACT III Acknowledgement V Table of Contents VII List of Tables IX List of Figures X Nomenclature XII Chapter 1 Introduction 1 1-1 Nanotube Overview 1 1-2 Nanotube Models 2 1-3 Molecular Dynamics Simulations Method 4 1-3.1 Theory 4 1-3.2 Potential function 5 1-3.3 Solving the time-dependent differential equations 5 1-3.4 Temperature control 6 1-3.5 Method s of accelerating the computational speed 7 1-3.5.1 Cut off function 7 1-3.5.2 Verlet list method 7 1-3.5.3 Cell link combined with Verlet list 9 1-3.6 Simulation procedure 11 1-4 Motivations and Goals 12 Chapter 2 Scaling Phenomena of the Buckling of Single-walled Carbon Nanotubes 14 2-1 Introduction 14 2-2 Tersoff Potential 18 2-3 Scaling Phenomena 21 2-4 Summary 28 Chapter 3 Mechanical Buckling of Multi-walled Carbon Nanotubes: the Effects of Slenderness Ratio 29 3-1 Introduction 29 3-2 MD Models 32 3-3 Effects of Slenderness Ratio 33 3-4 Summary 37 Chapter 4 Molecular Dynamics Investigation of Young’s Modulus of Multi-walled Carbon Nanotubes 38 4-1 Introduction 39 4-2 Simulation Method 40 4-3 Young’s Modulus Calculating 42 4-4 Summary 47 Chapter 5 Buckling Shapes of a Single-walled Carbon Nanotube Reinforced Aluminum Composite 48 5-1 Introduction 49 5-2 MD Simulation and the Potential 50 5-2.1 Set up the physical model 50 5-2.2 Potential Energy Function 52 5-2.2.1 Tersoff Potential 52 5-2.2.2 GEAM Potential 54 5-2.2.3 ME3Organic Potential 56 5-2.3 Standard operation procedure 58 5-3 Buckling Shapes and Energy 60 5-4 Summary 65 Chapter 6 Conclusions and Future Works 66 6-1 Conclusions 66 6-2 Future works 67 List of References 69 Appendices Appendix A: Materials ExplorerTM 74 Appendix B: Program for generating the atomic coordinates of a (n, m) carbon nanotube 78 Curriculum Vitae 87

    [1] S. Iijima, Helical microtubules of graphitic carbon. Nature, 354: 56-58, 1991.
    [2] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer, Quantized phonon spectrum of single-wall carbon nanotubes. Science, 289(5485): 1730-1733, 2000.
    [3] R. Satio, G.. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes. Imperial College Press, London, Singapore, 1998. ISBN 1-86094-093-5
    [4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6): 1087-1092, 1953.
    [5] M. P. Allen and D. J. Tildesley, Computer simulation of liquids. Oxford University Press, Great Britain, 1987. ISBN 0-19-855375-7
    [6] D. W. Heermann, Computer simulation methods in theoretical physics. Springer-Verlag Berlin Heidelberg, Germany, 1990. ISBN 3-540-52210-7
    [7] J. M. Haile, Molecular dynamics simulation: Elementary method. John Wiely &Sons, Inc., USA, 1992.
    [8] J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of Chemical Physics, 18(6): 817-829, 1950.
    [9] L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 159(1): 98-103, 1967.
    [10] L. Verlet, Computer “experiments” on classical fluids. II. Equilibrium correlation functions, Physical Review. 165(1): 201-214, 1968.
    [11] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics. 1, California Institute of Technology, United States of America, pp. 9-1~9-9, 2006. ISBN 0-8053-9046-4
    [12] W. C. Swope, H. C. Andersen, P. H. Berens, and R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, Journal of Chemical Physics, 76(1): 637-649, 1982.
    [13] J. Tersoff, New empirical model for the structural properties of silicon. Physical Review Letters, 56(6): 632-635, 1986.
    [14] C. Wei and D. Srivastava, Nanomechanics of carbon nanofibers: Structural and elastic properties, Applied Physics Letters, 85(12): 2208-2210, 2004.
    [15] S. Zhang, Z.Yao, S. Zhao, and E. Zhang, Buckling and competition of energy nad entropy lead conformation of single-walled carbon nanocones, Applied Physics Letters, 89(13): 131923, 2006.
    [16] D. C. Papaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
    [17] M. S. Dresselhaus,G. Dresselhaus, and Ph. Avouris (Eds.), Carbon nanotubes: Synthesis, structure, properties, and applications. Springer-Verlag Berlin Heidelberg, Germany, 2001. ISBN 3-540-41086-4
    [18] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 76(14): 2511-2514, 1996.
    [19] H. J. Qi, K. B. K. Teo, K. K. S. Lau, M. C. Boyce, W. I. Milne, J. Robertson, and K. K. Gleason, Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. Journal of the Mechanics and Physics of Solids, 51(11-12): 2213-2237, 2003.
    [20] K. M. Liew, C. H. Wong, X. Q. He, M. J. Tan, and S. A. Meguid, Nanomechanics of single and multiwalled carbon nanotubes. Physical Review B, 69(11): 115429, 2004.
    [21] M. Arroyo and T. Belytschko, An atomistic-based finite deformation membrane for single layer crystalline films. Journal of the Mechanics and Physics of Solids, 50(9): 1941-1977, 2002.
    [22] M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 69(11): 115415, 2004.
    [23] J. F. Waters, P. R. Guduru, and J. M. Xu, Nanotube mechanics – Recent progress in shell buckling mechanics and quantum electromechanical coupling. Composites Science and Technology, 66(9): 1141-1150, 2006.
    [24] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 381: 678-680, 1996.
    [25] A. Sears and R. C. Batra, Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Physical Review B, 69(23): 235406, 2004.
    [26] A. Sears and R. C. Batra, Buckling of multiwalled carbon nanotubes under axial compression. Physical Review B, 73(8): 085410, 2006.
    [27] N. L. Allinger, Y. H. Yuh, and J. H. Lii, Molecular mechanics. The MM3 force field for hydrocarbons. 1. Journal of the American Chemical Society, 111(23): 8551-8566, 1989.
    [28] S. S. Antman, J. E. Marsden, and L. Sirovich, Nonlinear problems of elasticity. Applied Mathematical Sciences, 107, Springer Science+Business Media, Inc., United States of America, 2005. ISBN 0-387-20880-1
    [29] T. Von Kármán, L. G. Dunn, and H. S. Tsien, The influence of curvature on the buckling characteristics of structures. Journal of the Aeronautical Sciences, 7(7): 276-289, 1940.
    [30] T. Von Kármán and H. S. Tsien, The buckling of thin cylindrical shells under axial compression. Journal of the Aeronautical Sciences, 8(8): 303-312, 1941.
    [31] G. W. Hunt, G. J. Lord, and M. A. Peletier, Cylindrical shell buckling: A characterization of localization and periodicity. Discrete and Continuous Dynamical Systems–Series B, 3(4): 505-518, 2003.
    [32] P. Mandal and C. R. Calladine, Buckling of thin cylindrical shells under axial compression. International Journal of Solids and Structures, 37(33): 4509-4525, 2000.
    [33] J. F. Jullian, Buckling of shell structures, on land, in the sea, and in the air. Elsevier Science Publishers Ltd., Great Britain at The Alden Press, Oxford, p. 1, 1991. ISBN 1-85166-716-4
    [34] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Size dependence of Young’s modulus in ZnO nanowires. Physical Review Letters, 96(7): 075505, 2006.
    [35] J. Y. Hsieh, J. M. Lu, M. Y. Huang, and C. C. Hwang, Theoretical variations in the Young’s modulus of single-walled carbon nanotubes with tube radius and temperature: A molecular dynamics study. Nanotechnology, 17(15): 3920-3924, 2006.
    [36] J. G. Swadener, E. P. George, and G. M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids, 50(4): 681-694, 2002.
    [37] B. M. Clemens, H. Kung, and S. A. Barnett, Structure and strength of multilayers. MRS Bulletin, 24(2): 20-26, 1999.
    [38] Y. R. Jeng and C. M. Tan, Investigation into the nanoindentation size effect using static atomistic simulations. Applied Physics Letters, 89: 251901, 2006.
    [39] H. E. Stanley, Introduction to phase transitions and critical phenomena. Oxford University Press, Inc., United States of America, 1971.
    [40] J. Tersoff, New empirical approach for the structure and energy of covalent systems. Physical Review B, 37(12): 6991-7000, 1988.
    [41] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 39(8): 5566-5568, 1989.
    [42] D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 42(15): 9458-9471, 1990.
    [43] N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan, Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Physical Review B, 66(23): 235424, 2002.
    [44] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill Book Company, Inc., United States of America, 1961. Library of Congress Catalog Card Number 59-8568
    [45] S. B. Batdorf, M. Schildcrout, and M. Stein, Critical stress of thin-walled cylinders in axial compression. Technical Report No. 887, NACA, 1947.
    [46] W. D. Pilkey, Formulas for stress, strain, and structural matrices. John Wiley & Sons, Inc., United States of America, 1994. ISBN 0-471-52746-7
    [47] R. Von Ladenburg, Astrophysikalische bemerkungen im anschluß an bersuche űber absorption und anomale dispersion in leuchtendem wasserstoff. Physikalische Zeitschrift XII, 12: 9-12, 1911.
    [48] D. O. Brush and B. O. Almroth, Buckling of bars, plates, and shells. McGraw-Hill, Inc., United States of America, 1975. ISBN 0-07-008593-5
    [49] L. H. Donnell and A. Ohio, A new theory for the buckling of thin cylinders under axial compression and bending. Transactions of The American Society of Mechanical Engineers, 56(12): 795-804, 1934.
    [50] H. S. Tsien, A theory for the buckling of thin shells. Journal of the Aeronautical Sciences. 9(10): 373-384, 1942.
    [51] C. C. Hwang, J. M. Lu, Q. Y. Kuo, and Y. C. Wang, Scaling phenomena of the buckling of single-walled carbon nanotubes. Nanoscale Research Letters, submitted, 2009.
    [52] J. M. Lu, Y. C. Wang, J. G. Chang, M. H. Su, and C. C. Hwang, Molecular-dynamic investigation of buckling of double-walled carbon nanotubes under uniaxial compression. Journal of the Physical Society of Japan, 77(4): 044603, 2008.
    [53] R. W. Haskins, R. S. Maier, R. M. Ebeling, C. P. Marsh, D. L. Majure, A. J. Bednar, C. R. Welch, and B. C. Barker, Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure. The Journal of Chemical Physics, 127(7): 074708, 2007.
    [54] V. Verma, V. K. Jindal, and K. Dharamvir, Elastic moduli of a boron nitride nanotube. Nanotechnology, 18(43): 435711, 2007.
    [55] D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejón, Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59(19): 12678-12688, 1999.
    [56] T. Yamamoto, K. Watanabe, and E. R. Hernández, Mechanical properties, thermal stability and heat transport in carbon nanotubes. Carbon nanotubes, Topics in applied physics, 111: 165-194, 2008.
    [57] J. M. Lu, C. C. Hwang, Q. Y. Kuo, and Y. C. Wang, Mechanical buckling of multi-walled carbon nanotubes: The effects of slenderness ratio. Physica E: Low-Dimensional Systems and Nanostructures, 40(5): 1305-1308, 2008.
    [58] Z. Peralta-Inga, S. Boyd, J. S. Murray, C. J. O’Connor, and P. Politzer, Density Functional Tight-Binding Studies of Carbon Nanotube Structures. Structure Chemistry, 14(3): 431-443, 2003.
    [59] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Young’s modulus of single-walled nanotubes. Physical Review B, 58(20): 14013-14019, 1998.
    [60] C. Goze, L. Vaccarini, L. Henrard, P. Bernier, E. Hernandez, and A. Rubio, Elastic and mechanical properties of carbon nanotubes. Synthetic Metals, 103(1-3): 2500-2501, 1999.
    [61] J. Cai, R. F. Bie, X. M. Tan, and C. Lu, Application of the tight-binding method to the elastic modulus of C60 and carbon nanotube. Physica B-Condensed Matter, 344(1-4): 99-102, 2004.
    [62] G. Van Lier, C. Van Alsenoy, V. Van Doren, and P. Geerlings, Ab initio study of the elastic properties of single-walled carbon nanotubes and grapheme. Chemical Physics Letters, 326(1-2): 181-185, 2000.
    [63] D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Energetics of nanoscale graphitic tubules. Physical Review B, 45(21): 12592- 12595, 1992.
    [64] H. W. Yap, R. S. Lakes, and R. W. Carpick, Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Letters, 7(5): 1149-1154, 2007.
    [65] H. Nakano, H. Ohta, A. Yokoe, K. Doi, and A. Tachibana, First-principle molecular-dynamics study of hydrogen adsorption on an aluminum-doped carbon nanotube. Journal of Power Sources, 163(1): 125-134, 2006.
    [66] L. Ci, Z. Ryu, N. Y. Jin-Phillipp, and M. Rühle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Materialia, 54(20): 5367-5375, 2006.
    [67] T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito, Processing of carbon nanotube reinforced aluminum composite. Journal of Materials Research, 13(9): 2445-2449, 1998.
    [68] S. R. Bakshi, V. Singh, K. Balani and D. G. McCartney, Carbon nanotube reinforced aluminum composite coating via cold spraying. Surface & Coatings Technology, 202(21): 5162-5169, 2008.
    [69] A. M. K. Esawi and M. A. E. Borady, Carbon nanotube-reinforced aluminium strips. Composites Science and Technology, 68(2): 486-492, 2008.
    [70] C. F. Deng, X. Zhang, Y. Ma, and D. Wang, Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Metals, 26(5): 450-455, 2007.
    [71] T. Ohira, O. Ukai, M. Noda, Y. Takeuchi, M. Murata, and H. Yoshida, Molecular-dynamics simulations of hydrogenated amorphous silicon thin-film growth. MRS Symposium Proceeding, 408: 445-450, 1996.
    [72] R. Smith, A semi-empirical many-body interatomic potential for modelling dynamical processes in gallium arsenide. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 67(1-4): 335-339, 1992.
    [73] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long., G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly, Atomic scale structure of sputtered metal multilayers. Acta Materialia, 49(19): 4005-4015, 2001.
    [74] Fujitsu Limited, Users’ Manual of Materials Explorer for Windows, 2002.

    下載圖示 校內:2012-08-14公開
    校外:2012-08-14公開
    QR CODE