簡易檢索 / 詳目顯示

研究生: 蔣崇聖
Chiang, Chung-Sheng
論文名稱: 常壓下以直流電漿火炬生產二氧化矽奈米粉體之研究
The Production and Characterization of DC Plasma Torch Synthesized Silica Nanoparticles under Atmospheric Pressure
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 128
中文關鍵詞: 二氧化矽奈米粒子直流電漿製程常壓電漿
外文關鍵詞: Silica nanoparticles, DC plasma process, Atmospheric plasma
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以直流電漿火炬於常壓下,以矽烷有機物(HMDSO, Hexamethyldisiloxane)為前驅物,生產二氧化矽奈米粉體。利用成核輔助粒子分離(Nucleation-assisted process for the removal of fine aerosol particles)的方式,結合傳統的濾布式收集袋,提升粉體與氣體的分離效率。藉由控制前驅物流率、電漿氣體組成及驟冷氣體的冷卻速率,達到調整產物粒子一次粒徑、二次粒徑及表面特性的目的。並以TEM、DLS、FT-IR與XRD分析產物粒子一次粒徑粒徑、外觀形貌以及團聚情形、化學組成及結晶成度。透過調整電漿中氧氣的比例,可控制粒子表面的親疏水特性,並成功生產出疏水與親水的二氧化矽奈米粒子,其一次粒徑分別介於8.0- 14.0 nm與7.4- 14.3 nm之間;二次粒徑分別介於195- 260 nm與135- 198 nm之間。將粉體的冷卻速率提升20%可以使粒子一次粒徑降低75%以及二次粒徑降低8%。利用成核輔助粒子分離的方式,粉體收集效率可達70%,產率可達75 g/ hr。本研究所產之二氧化矽奈米粉體的成本為11.7 NT/ g。

    In this study, hexamethyldisiloxane (HMDSO) was used to produce hydrophobic and hydrophilic silica nanoparticles in an atmospheric DC plasma reactor.The hydrophilicity of produced particles can be controlled by varying the molar ratio of oxygen and HMDSO in the reactor. Nucleation-assisted process for removing fine aerosol particles was used to enhance the collection efficiency of the filter. The resulting nanoparticles were characterized for their morphology, size and chemical composition. Transmission electron microscopy, dynamic laser scattering and FT-IR techniques were used to characterize and to measure the mean diameter, agglomerate size and functional groups of the resulting nanopowders, respectively.
    The mean particle size of hydrophobic and hydrophilic silica nanoparticles produced at the exit (filter) were between 8.0- 14.0 nm and 7.4- 14.3 nm, respectively while the agglomerates were of much larger size, between 195- 260 nm and 135- 198 nm, respectively. 20% increment of cooling rate leads to a decrease of the mean particles size and agglomerate size by 75% and 8%, respectively. The collection efficiency was improved to 70% by employing the nucleation-assisted process and the collected particles were all redispersible. The production rate of silica nanoparticles is 75 g/hr and the cost of produced particles is 11.7 NT/ g.

    目錄 中文摘要 ............ I Extended Abstract........... II 致謝 ............. XI 目錄 ............. XII 圖目錄 .............XVII 表目錄 .............XXII 第一章 緒論 ............ 1 1-1 前言 ............ 1 1-2 研究動機 .......... 4 第二章 文獻回顧 .......... 5 2-1 氣體到粒子的轉變 .......... 5 2-1-1 化學反應 ......... 7 2-1-2 凝聚(Coagulation) ......... 7 2-1-3 合併(Coalescence) ......... 7 2-2 粒子成核成長理論 .......... 9 2-2-1 粒子的成核 ......... 9 2-2-2 粒子的成核速率 ......... 14 2-2-3 粒子的成長速率 ......... 15 2-2-4 粒子於氣相中碰撞凝聚 ....... 15 2-3 氣相中常見的奈米粉體製備方法 ...... 16 2-3-1 火焰反應器 ......... 17 2-3-2 高溫爐反應器 ......... 18 2-3-3 氣相沉積反應器 ......... 19 2-3-4 電漿反應器 ......... 21 2-4 電漿法合成奈米粒子 ........ 22 2-4-1 電漿及其特性 ......... 22 2-4-2 電漿中的能量傳送 ....... 25 2-4-3 電漿反應器設計概念 ....... 33 2-4-4 電漿系統 ......... 36 2-4-4-1DC、AC電漿系統 ....... 36 2-4-4-2RF電漿系統 ....... 38 2-4-4-3 微波電漿系統 ........ 43 2-5 直流電漿火炬原理 ........ 48 2-5-1 電漿火炬設計 ......... 48 2-5-2 電極的熱傳機制 ......... 49 2-5-2-1 陰極熱傳 ........ 49 2-5-2-2 陽極熱傳 ........ 50 2-5-3 氣體特性對火炬的影響 ....... 51 2-5-4 離子化的過程 ......... 53 2-5-5 電弧穩定性 ......... 53 2-5-5-1 電弧直徑 ........ 54 2-5-5-2 壓縮穩定法 ........ 54 2-5-5-3 渦流穩定法 ........ 55 2-6 製程中影響奈米微粒的重要參數 ...... 57 2-6-1 前驅物濃度 ......... 57 2-6-2 系統氣壓 ......... 59 2-6-3 滯留時間 ......... 60 2-6-4 電漿能量 ......... 61 2-6-5 驟冷條件(Quench Condition) ..... 62 2-7 粒子於電漿中生成的機制 ........ 63 2-7-1 原子簇生成 ......... 64 2-7-2 原子簇聚集與快速成長 ....... 64 2-7-3 初級粒子團聚 ......... 65 2-7-4 離子與自由基的吸積 ....... 65 2-7-5 成長飽和 ......... 65 第三章 實驗設備與方法 .......... 66 3-1 實驗藥品 .......... 66 3-2 實驗設備 .......... 67 3-2-1 直流電漿火炬 ......... 67 3-2-2 前驅物輸送設備 ......... 68 3-2-3 驟冷(Quenching)設備 ....... 69 3-2-4 粉體收集設備 ......... 70 3-2-5 直流電漿反應器 ......... 71 3-3 實驗流程 .......... 73 3-4 分析方法 .......... 74 3-4-1 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) ........... 74 3-4-2 動態光散射儀(Dynamic Light Scattering, DLS) ... 76 3-4-3 傅立葉紅外線光譜儀 (Fourier-Transform Infrared Spectrometer, FTIR)........ 78 3-4-4 X光繞射儀(X-ray diffractometer, XRD) .... 80 第四章 結果與討論 .......... 81 4-1 前驅物進料流率對粒徑之影響 ...... 83 4-1-1 氧氣缺乏的條件下 ....... 83 4-1-2 氧氣充足的條件下 ....... 92 4-2 電漿氧氣比例對粒徑之影響 ........ 99 4-3 冷卻速率對粒徑之影響 ........ 104 4-4 粒子化學組成分析 ........ 108 4-5 粒子結晶性分析 .......... 116 第五章 結論 ............ 117 參考文獻 ............. 120

    [1] Fu Shao-Yun, Xi-Qiao Feng, Bernd Lauke, Yiu-Wing Mai, "Effects of particle size, particle/ matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites", Composites Part B: Engineering, vol. 39, pp. 933-961, 2008.
    [2] Smydera Julie A., Todd D. Kraussa, "Coming attractions for semiconductor quantum dots", Materials Today, vol. 14, pp. 382-396, 2011.
    [3] West Richard Henry, "Modelling the Chloride Process for Titanium Dioxide Synthesis", Departments of Chemical Engineering, University of Cambridge, pp. 6, 2008.
    [4] NTT Advanced Technology Corporation, "High Refractive Index/ Low Refractive Index Resins", Japan, http://www.ntt-at.com/product/hl_resins/, 2015.
    [5] Vollath D., "Plasma synthesis of nanopowders", Journal of Nanoparticle Research, vol. 10, pp. 39-57, 2008.
    [6] Gurav Abhijit, Toivo Kodas, Tammy Pluym, Yun Xiong, "Aerosol processing of materials", Aerosol science and technology, vol. 19, pp. 411-452, 1993.
    [7] Friedlander Sheldon Kay, "Smoke, dust, and haze: fundamentals of aerosol behavior topicals in chemical engineering", Wiley, 1977.
    [8] Okuyama Kikuo, Yasuo Kousaka, Noboru Tohge, Satoru Yamamoto, Jin Jwang Wu, RC Flagan, JH Seinfeld, "Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors", AIChE Journal, vol. 32, pp. 2010-2019, 1986.
    [9] Kingery W David, "Introduction to ceramics", vol. pp. 1960.
    [10] Gutsch Andreas, Heike Mühlenweg, Michael Krämer, "Tailor-Made Nanoparticles via Gas-Phase Synthesis", Small, vol. 1, pp. 30-46, 2005
    [11] Pratsinis Sotiris E, Patrick T Spicer, "Competition between gas phase and surface oxidation of TiCl 4 during synthesis of TiO 2 particles", Chemical Engineering Science, vol. 53, pp. 1861-1868, 1998.
    [12] Schaefer Dale W, Alan J Hurd, "Growth and structure of combustion aerosols: fumed silica", Aerosol Science and Technology, vol. 12, pp. 876-890, 1990.
    [13] Fuchs N. A., "The Mechanics of Aerosols", Oxford, pp. 1964.
    [14] Hinds William C, "Aerosol technology: properties, behavior, and
    121
    measurement of airborne particles", John Wiley & Sons, 2012.
    [15] Ahn KH, CH Jung, M Choi, JS Lee, "Particle sampling and real time size distribution measurement in H2/O2/TEOS diffusion flame", Journal of Nanoparticle Research, vol. 3, pp. 161-170, 2001. [16] Cao, Guozhong, "Nanostructures and nanomaterials: synthesis, properties and applications.", London: Imperial College Press, 2004.
    [17] Chuo Min-Da, "Preliminary Study on Development of Thermal Plasma Systems for Nanoparticles Synthesis", Graduate Institute of Environmental Engineering, National Central University, pp. 21-24, 2005.
    [18] Peineke C, MB Attoui, A Schmidt-Ott, "Using a glowing wire generator for production of charged, uniformly sized nanoparticles at high concentrations", Journal of Aerosol Science, vol. 37, pp. 1651-1661, 2006.
    [19] Veranth John M, Robert Gelein, Günter Oberdörster, "Vaporization--Condensation Generation of Ultrafine Hydrocarbon Particulate Matter for Inhalation Toxicology Studies", Aerosol Science & Technology, vol. 37, pp. 603-609, 2003.
    [20] Chein HungMin, Dale A Lundgren, "A high-output, size-selective aerosol generator", Aerosol science and technology, vol. 23, pp. 510-520, 1995.
    [21] Chen Da-Ren, David YH Pui, Stanley L Kaufman, "Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range", Journal of Aerosol Science, vol. 26, pp. 963-977, 1995.
    [22] Prenni Anthony J, Ronald L Siefert, Timothy B Onasch, Margaret A Tolbert, Paul J DeMott, "Design and characterization of a fluidized bed aerosol generator: A source for dry, submicrometer aerosol", Aerosol Science & Technology, vol. 32, pp. 465-481, 2000.
    [23] Horvath H, M Gangl, "A low-voltage spark generator for production of carbon particles", Journal of Aerosol Science, vol. 34, pp. 1581-1588, 2003.
    [24] Almquist Catherine B, Pratim Biswas, "Role of synthesis method and particle size of nanostructured TiO 2 on its photoactivity", Journal of Catalysis, vol. 212, pp. 145-156, 2002.
    [25] Arabi–Katbi Osama I, Sotiris E Pratsinis, Philip W Morrison, Constantine M Megaridis, "Monitoring the flame synthesis of TiO 2
    122
    particles by in-situ FTIR spectroscopy and thermophoretic sampling", Combustion and Flame, vol. 124, pp. 560-572, 2001.
    [26] Lee Donggeun, Mansoo Choi, "Coalescence enhanced synthesis of nanoparticles to control size, morphology and crystalline phase at high concentrations", Journal of Aerosol Science, vol. 33, pp. 1-16, 2002.
    [27] Pratsinis Sotiris E, Wenhua Zhu, Srinivas Vemury, "The role of gas mixing in flame synthesis of titania powders", Powder Technology, vol. 86, pp. 87-93, 1996.
    [28] Spicer Patrick T, Olivier Chaoul, Stavros Tsantilis, Sotiris E Pratsinis, "Titania formation by TiCl 4 gas phase oxidation, surface growth and coagulation", Journal of Aerosol Science, vol. 33, pp. 17-34, 2002.
    [29] Wang Zhong-Min, Guixiang Yang, Pratim Biswas, Wayne Bresser, Punit Boolchand, "Processing of iron-doped titania powders in flame aerosol reactors", Powder technology, vol. 114, pp. 197-204, 2001.
    [30] Yang Guixiang, Haoren Zhuang, Pratim Biswas, "Characterization and sinterability of nanophase titania particles processed in flame reactors", Nanostructured materials, vol. 7, pp. 675-689, 1996.
    [31] Cho Kuk, Pratim Biswas, "Sintering rates for pristine and doped titanium dioxide determined using a tandem differential mobility analyzer system", Aerosol science and technology, vol. 40, pp. 309-319, 2006.
    [32] Nakaso Koichi, Toshiyuki Fujimoto, Takafuimi Seto, Manabu Shimada, Kikuo Okuyama, Melissa M Lunden, "Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering", Aerosol Science & Technology, vol. 35, pp. 929-947, 2001.
    [33] Tsantilis Stavros, Sotiris E Pratsinis, "Narrowing the size distribution of aerosol-made titania by surface growth and coagulation", Journal of aerosol science, vol. 35, pp. 405-420, 2004.
    [34] Kim Chan Soo, Koichi Nakaso, Bin Xia, Kikuo Okuyama, Manabu Shimada, "A new observation on the phase transformation of TiO2 nanoparticles produced by a CVD method", Aerosol science and technology, vol. 39, pp. 104-112, 2005.
    [35] Nakaso Koichi, Kikuo Okuyama, Manabu Shimada, Sotiris E Pratsinis, "Effect of reaction temperature on CVD-made TiO 2 primary particle diameter", Chemical Engineering Science, vol. 58, pp. 3327-3335, 2003.
    123
    [36] Kim Dong-Joo, Kyo-Seon Kim, Qian-Qiu Zhao, "Production of monodisperse nanoparticles and application of discrete-monodisperse model in plasma reactors", Journal of Nanoparticle Research, vol. 5, pp. 211-223, 2003.
    [37] Carim Atlaf H, P Doherty, Toivo T Kodas, K Ott, "Nanocrystalline YBa 2 Cu 3 O 7− δ/Ag composite particles produced by aerosol decomposition", Materials Letters, vol. 8, pp. 335-339, 1989.
    [38] Weimer Alan W, Raymond P Roach, Christopher N Haney, William G Moore, William Rafaniello, "Rapid carbothermal reduction of boron oxide in a graphite transport reactor", AIChE journal, vol. 37, pp. 759-768, 1991.
    [39] Wu Jin Jwang, Hung V Nguyen, Richard C Flagan, Kikuo Okuyama, Yasuo Kousaka, "Evaluation and control of particle properties in aerosol reactors", AIChE journal, vol. 34, pp. 1249-1256, 1988.
    [40] Landgrebe James D, Sotiris E Pratsinis, Sebastian VR Mastrangelo, "Nomographs for vapor synthesis of ceramic powders", Chemical Engineering Science, vol. 45, pp. 2931-2941, 1990.
    [41] Gleiter Herbert, "Nanocrystalline materials", Progress in materials science, vol. 33, pp. 223-315, 1989.
    [42] Vissokov GP, BI Stefanov, NT Gerasimov, DH Oliver, RZ Enikov, AI Vrantchev, EG Balabanova, PS Pirgov, "Plasmachemical technology for high-dispersion products", Journal of materials science, vol. 23, pp. 2415-2418, 1988.
    [43] 洪昭南, 郭有斌, "電漿反應器與原理", 化工技術, vol. 9, pp. 156, 2001.
    [44] Eliasson Baldur, Ulrich Kogelschatz, "Nonequilibrium volume plasma chemical processing", Plasma Science, IEEE Transactions on, vol. 19, pp. 1063-1077, 1991.
    [45] 張家豪, 魏鴻文, 翁政輝, 柳克強, 李安平, 寇崇善, 吳敏文, 曾錦清, 蔡文發, 鄭國川, "電漿源原理與應用之介紹", 物理雙月刊, vol. 28, pp. 440-451, 2006.
    [46] Vollath Dieter, "Plasma synthesis of nanopowders", Journal of Nanoparticle Research, vol. 10, pp. 39-57, 2008.
    [47] Vollath Dieter, Kurt E Sickafus, "Synthesis of nanosized ceramic oxide
    124
    powders by microwave plasma reactions", Nanostructured Materials, vol. 1, pp. 427-437, 1992.
    [48] Vollath Dieter, D Vinga Szabo, "The Microwave plasma process–a versatile process to synthesise nanoparticulate materials", Journal of Nanoparticle Research, vol. 8, pp. 417-428, 2006.
    [49] Mangolini L, D Jurbergs, E Rogojina, U Kortshagen, "Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals", Journal of Luminescence, vol. 121, pp. 327-334, 2006.
    [50] Karthikeyan J, CC Berndt, J Tikkanen, S Reddy, H Herman, "Plasma spray synthesis of nanomaterial powders and deposits", Materials Science and Engineering: A, vol. 238, pp. 275-286, 1997.
    [51] Ziemann Paul J, David B Kittelson, Peter H McMurry, "Effects of particle shape and chemical composition on the electron impact charging properties of submicron inorganic particles", Journal of aerosol science, vol. 27, pp. 587-606, 1996.
    [52] Matsui I, "Preparation of magnetic nanoparticles by pulsed plasma chemical vapor synthesis", Journal of Nanoparticle Research, vol. 8, pp. 429-443, 2006.
    [53] Tekna Plasma Systems Inc., "Development of Nanopowder Synthesis Using Induction Plasma", Canada, http://www.tekna.com, 2007.
    [54] Kim Kyoungjin, "Plasma synthesis and characterization of nanocrystalline aluminum nitride particles by aluminum plasma jet discharge", Journal of Crystal Growth, vol. 283, pp. 540-546, 2005.
    [55] Cota-Sanchez G, G Soucy, A Huczko, H Lange, "Induction plasma synthesis of fullerenes and nanotubes using carbon black–nickel particles", Carbon, vol. 43, pp. 3153-3166, 2005.
    [56] Cruden Brett A, Alan M Cassell, Qi Ye, M Meyyappan, "Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers", Journal of Applied Physics, vol. 94, pp. 4070-4078, 2003.
    [57] Ko TS, S Yang, HC Hsu, CP Chu, HF Lin, SC Liao, TC Lu, HC Kuo, Wen-Feng Hsieh, SC Wang, "ZnO nanopowders fabricated by dc thermal plasma synthesis", Materials Science and Engineering: B, vol. 134, pp. 54-58, 2006.
    [58] Marzik JV, RJ Suplinskas, RHT Wilke, PC Canfield, DK Finnemore, M Rindfleisch, J Margolies, ST Hannahs, "Plasma synthesized doped B powders for MgB 2 superconductors", Physica C: Superconductivity,
    125
    vol. 423, pp. 83-88, 2005.
    [59] Tong Lirong, Ramana G Reddy, "Synthesis of titanium carbide nano-powders by thermal plasma", Scripta Materialia, vol. 52, pp. 1253-1258, 2005.
    [60] Wang Yi, Yong Qin, Guicun Li, Zuolin Cui, Zhikun Zhang, "One-step synthesis and optical properties of blue titanium suboxide nanoparticles", Journal of crystal growth, vol. 282, pp. 402-406, 2005.
    [61] Schweigert Vitaly A, Irina V Schweigert, "Coagulation in a low-temperature plasma", Journal of Physics D: Applied Physics, vol. 29, pp. 655-659, 1996. [62] Buss, Richard J., "Rf-plasma synthesis of nanosize silicon carbide and nitride." Sandia National Labs., 1997.
    [63] Anderson Harold, Toivo T Kodas, Douglas M Smith, "Vapor-phase processing of powders: plasma synthesis and aerosol decomposition", American Ceramic Society Bulletin, vol. 68, pp. 996-1000, 1989. [64] Vollath, Dieter, and D. Vinga Szabo., "Chapter Eight:: Synthesis of Nanopowders by the Microwave Plasma Process-Basic Considerations and Perspectives for Scaling Up.", World Scientific, 2002.
    [65] Vollath D, DV Szabo, "Nanoparticles from compounds with layered structures", Acta materialia, vol. 48, pp. 953-967, 2000.
    [66] Vollath D, DV Szabo, "Nanocoated particles: a special type of ceramic powder", Nanostructured materials, vol. 4, pp. 927-938, 1994.
    [67] Vollath D, DV Szabó, J Fuchs, "Synthesis and properties of ceramic-polymer composits", Nanostructured Materials, vol. 12, pp. 433-438, 1999.
    [68] Brenner JR, JBL Harkness, MB Knickelbein, GK Krumdick, CL Marshall, "Microwave plasma synthesis of carbon-supported ultrafine metal particles", Nanostructured Materials, vol. 8, pp. 1-17, 1997.
    [69] Chau Joseph Lik Hang, Ming-Kai Hsu, Ching-Chang Hsieh, Chih-Chun Kao, "Microwave plasma synthesis of silver nanopowders", Materials Letters, vol. 59, pp. 905-908, 2005.
    [70] Kalyanaraman R, Sang Yoo, MS Krupashankara, TS Sudarshan, RJ Dowding, "Synthesis and consolidation of iron nanopowders", Nanostructured materials, vol. 10, pp. 1379-1392, 1998.
    [71] Troitskiy VN, IA Domashnev, EN Kurkin, OM Grebtsova, VI Berestenko, IL Balikhin, SV Gurov, "Synthesis and characteristics of ultra-fine superconducting powders in the Nb–N, Nb–N–C,
    126
    Nb–Ti–N–C systems", Journal of Nanoparticle Research, vol. 5, pp. 521-528, 2003.
    [72] Chau Joseph Lik Hang, Ming-Kai Hsu, Chih-Chun Kao, "Microwave plasma synthesis of Co and SiC-coated Co nanopowders", Materials Letters, vol. 60, pp. 947-951, 2006.
    [73] Gallimore Jr Scott D, "Operation of a High-Pressure Uncooled Plasma Torch with Hydrocarbon Feedstocks", vol. pp. 1998. [74] Kato, Ryoichi, and Itsuro Kimura., "Numerical simulation of flame-stabilization and combustion promotion by plasma jets in supersonic air streams.", Symposium (International) on Combustion., vol. 26, pp.2941-2947, 1996.
    [75] Mitani Tohru, "Ignition problems in scramjet testing", Combustion and Flame, vol. 101, pp. 347-359, 1995.
    [76] Stouffer Scott David, "The development and operating characteristics of an improved plasma torch for supersonic combustion applications", 1989.
    [77] Chan AKF, JC Hilliard, AR Jones, FJ Weinberg, "An electrically efficient, finely tunable, low-power plasma generator", Journal of Physics D: Applied Physics, vol. 13, pp. 2309, 1980.
    [78] Eberhart Robert Clyde, RA Seban, "The energy balance for a high current argon arc", International Journal of Heat and Mass Transfer, vol. 9, pp. 939-949, 1966.
    [79] CURRAN F, "An experimental study of energy loss mechanisms and efficiency considerations in the low power dc arcjet", vol. pp. 1985.
    [80] Noeske HO, "Analytical investigation of a bipropellant arc jet", ARS Journal, vol. 32, pp. 1701-1708, 1962.
    [81] Cobine James Dillon, "Gaseous conductors: theory and engineering applications", Dover Publications, 1958.
    [82] Barbi E, JR Mahan, WF O'brien, TC Wagner, "Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications", Journal of Propulsion and Power, vol. 5, pp. 129-133, 1989.
    [83] Abdali A, B Moritz, A Gupta, H Wiggers, C Schulz, "Hybrid microwave-plasma hot-wall reactor for synthesis of silica nanoparticles under well-controlled conditions", Journal of optoelectronics and advanced materials, vol. 12, pp. 440-444, 2010.
    [84] Jang Hee Dong, "Generation of silica nanoparticles from
    127
    tetraethylorthosilicate (TEOS) vapor in a diffusion flame", Aerosol Science & Technology, vol. 30, pp. 477-488, 1999.
    [85] Roth Christian, Gina Oberbossel, Elizabeth Buitrago, Roman Heuberger, Philipp Rudolf von Rohr, "Nanoparticle synthesis and growth in a continuous plasma reactor from organosilicon precursors", Plasma Processes and Polymers, vol. 9, pp. 119-134, 2012.
    [86] Hundt Morten, Patrick Sadler, Igor Levchenko, Matthias Wolter, Holger Kersten, Kostya Ken Ostrikov, "Real-time monitoring of nucleation-growth cycle of carbon nanoparticles in acetylene plasmas", Journal of Applied Physics, vol. 109, pp. 123305, 2011.
    [87] Tsantilis Stavros, Sotiris E Pratsinis, "Soft-and hard-agglomerate aerosols made at high temperatures", Langmuir, vol. 20, pp. 5933-5939, 2004.
    [88] Diener electronic Co., "Atmospheric Plasma- Plasma Beam", German, http://www.plasma.de/index.html, 2015.
    [89] Chin-Cheng Chen, Han-Kuan Shu, Yeun-Kwei Yang, "Nucleation-assisted process for the removal of fine aerosol particles", Industrial & engineering chemistry research, vol. 32, pp. 1509-1519, 1993.
    [90] Perkin Elmer, "FT-IR Spectroscopy Attenuated Total Reflectance (ATR)", USA, www.perkinelmer.com, 2005.
    [91] Soltani Nayereh, Elias Saion, Maryam Erfani, Khadijeh Rezaee, Ghazaleh Bahmanrokh, Gregor PC Drummen, Afarin Bahrami, Mohd Zobir Hussein, "Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation", International journal of molecular sciences, vol. 13, pp. 12412-12427, 2012.
    [92] Jana Sunirmal, Mi Ae Lim, In Chan Baek, Chang Hae Kim, Sang Il Seok, "Non-hydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins", Materials Chemistry and Physics, vol. 112, pp. 1008-1014, 2008.
    [93] Rajput Deepak, Lino Costa, Alexander Terekhov, Kathleen Lansford, William Hofmeister, "Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates", Nanotechnology, vol. 23, pp. 105304, 2012.
    [94] Burneau André, Cédric Carteret, "Near infrared and ab initio study of the vibrational modes of isolated silanol on silica", Physical Chemistry
    128
    Chemical Physics, vol. 2, pp. 3217-3226, 2000.
    [95] Aguiar H, J Serra, P González, B León, "Structural study of sol–gel silicate glasses by IR and Raman spectroscopies", Journal of Non-Crystalline Solids, vol. 355, pp. 475-480, 2009.
    [96] Yue Renliang, Dong Meng, Yong Ni, Yi Jia, Gang Liu, Jie Yang, Haidi Liu, Xiaofeng Wu, Yunfa Chen, "One-step flame synthesis of hydrophobic silica nanoparticles", Powder Technology, vol. 235, pp. 909-913, 2013.
    [97] Innocenzi Plinio, Giovanna Brusatin, "A comparative FTIR study of thermal and photo-polymerization processes in hybrid sol–gel films", Journal of Non-Crystalline Solids, vol. 333, pp. 137-142, 2004.
    [98] Reuter Ruediger, Katja Rügner, Dirk Ellerweg, Teresa de los Arcos, Achim von Keudell, Jan Benedikt, "HMDSO/O2 atmospheric pressure plasma chemistry leading to SiO2 film synthesis", Bulletin of the American Physical Society, vol. 55, pp. 2010.

    下載圖示 校內:2017-08-19公開
    校外:2017-08-19公開
    QR CODE