| 研究生: |
潘梓瑄 Pan, Tzu-Hsuan |
|---|---|
| 論文名稱: |
基於絕熱轉換捷徑理論之絕緣層覆矽多模分(多)工器設計與模擬 Design and Simulation of Mode (De)multiplexers on SOI using Shortcuts to Adiabaticity |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 絕緣層覆矽 、波導 、多模分(多)工器 |
| 外文關鍵詞: | silicon-on-insulator, waveguides, mode (de)multiplexer |
| 相關次數: | 點閱:174 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於研究絕緣層覆矽(silicon-on-insulator, SOI)多模分(多)工器之理論分析與數值模擬。本論文之多模分(多)工器,是以非對稱方向耦合器(asymmetrical directional coupler, ADC)為基底,並結合量子系統中之絕熱轉換捷徑理論(shortcuts to adiabaticity, STA)設計而成。首先,我們會介紹耦合波導系統之基本理論,並比較弱耦合波導系統與近共振電磁場下之二能階系統的光學相似性,藉此將量子系統中之絕熱轉換捷徑協定應用到耦合波導系統中。由於絕熱轉換捷徑協定的引入,進而設計了波導間的耦合係數及不匹配參數,使得元件更加穩定。接下來,我們著重於利用絕緣層覆矽材料以具體實現多模分(多)工器之設計,絕緣層覆矽材料所具有的高折射率對比特性,因此多模分(多)工器的長度可望更為縮減。模擬結果與理論預測相符合,並證明了該設計確實具有良好的頻寬特性以及製程容忍度。
This thesis is devoted to the theoretical investigation and numerical simulations of mode (de)multiplexers based on silicon-on-insulator (SOI). The mode (de)multiplexers in this thesis are based on asymmetrical directional couplers (ADCs) and designed using shortcuts to adiabaticity (STA). First, we will introduce the theory of coupled-waveguide system and the quantum‐optical analogies between weakly-coupled waveguide structure and two-level system driven by near-resonant laser light. By means of the analogies, the STA protocol is introduced into coupled-waveguide system. In this way, the coupling coefficient and propagation constants mismatch can be engineered to optimize the device robustness. Then, we emphasize the applicability of the STA protocol to the SOI material system, the high index contrast of SOI also allows devices to be more compact. The simulation results agree with the theoretical predictions, and show that the mode (de)multiplexers using STA are broadband and have large fabrication tolerance.
1. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR.” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
2. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21, 1950–1955 (1982).
3. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission.” J. Lightwave Technol. 32, 2421–2426 (2012).
4. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
5. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38, 3468–3470 (2013).
6. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling.” Opt. Express. 13, 9381–9387 (2005).
7. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38, 1422–1424 (2013).
8. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
9. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At., Mol., Opt. Phys. 62, 117–169 (2013).
10. S.-Y. Tseng, “Counterdiabatic mode-evolution based coupled-waveguide devices,” Opt. Express 21, 21224–21235 (2013).
11. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22, 18849–18859 (2014)
12. S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39, 2306–2308 (2014).
13. X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, “Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity,” Opt. Express 22, 24169–24178 (2014).
14. K. Okamoto, “Fundamentals of Optical Waveguides,” 2nd ed., Academic Press, New York, 2006.
15. S.-Y. Tseng, “Development of linear and nonlinear components for integrated optical signal processing.” Ph.D. dissertation, University of Maryland, College Park, USA, 2006.
16. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons.” Proceed. SPIE. 4987, 69–82 (2003).
17. Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).
18. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview.” J. Opt. Soc. Am. A 11, 963–983 (1994).
19. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
20. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).
21. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
22. D. Daems, A. Ruschhaupt, D. Sugny, and S. Gu´erin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
23. X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Gu´erin, and J. G. Muga, “Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors,” Phys. Rev. A
88, 033406 (2013).
24. A. Yariv, “ Coupled-mode theory for guided wave optics,” IEEE J. Quant. Electron. 9, 919–933 (1973).
25. T. A. Ramadan, R. Scarmozzino, and R. M. Osgood, “Adiabatic couplers: design rules and optimization,” J.Lightwave Technol. 16, 277–283 (1998).
26. Y.-F. Chiu, “Design and Simulation of a Counterdiabatic Directional Coupler based on SOI,” Unpublished master dissertation, National Cheng Kung University, Tainan, Taiwan, 2014.
27. M. L. Cooper and S. Mookherjea, “Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides,” Opt. Express 17, 1583–1599 (2009).
28. A. Ruschhaupt and J. G. Muga, “Shortcut to adiabaticity in two-level systems: control and optimization,” J. Mod. Opt. 61, 828–832 (2014).