簡易檢索 / 詳目顯示

研究生: 吳銘斌
Wu, Ming-Ping
論文名稱: 第一型血小板活化素在子宮頸癌化過程中扮演抑制腫瘤血管新生及基質反應角色之探討
The roles of thrombospondin-1 in tumor angiogenesis and stroma reaction during cervical carcinogenesis
指導教授: 周振陽
Chou, Cheng-Yang
吳梨華
Wu, Li-Wha
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 163
中文關鍵詞: 基質反應基底膜活化型纖維母細胞肌纖維母細胞纖維母細胞子宮頸癌惡性腫瘤血管新生作用第一型血小板活化素α-平滑肌肌動蛋白
外文關鍵詞: myofibroblasts, fibroblasts, desmin, cervical neoplasms, α-smooth muscle actin, angiogenesis, activated fibroblasts, stromal reaction, thrombospondin-1
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管新生表現型的出現(血管新生作用開關),是子宮頸癌化過程是必須的步驟。而血管新生作用開關是由血管新生活化因子與抑制因子兩者相互抗衡的所調控。第一型血小板活化素(thrombospondin, TSP-1)是一種內生性血管新生抑制因子,具有多處大分子特殊結構(domains)及多個受體(receptor)。首先,我們探討在子宮頸鱗狀細胞癌化過程中,第一型血小板活化素的表現與人體子宮頸鱗狀細胞癌及其癌前病變之子宮頸檢體中,在時間與空間上的關聯性;以及其與腫瘤血管新生表現型的關聯性。我們的結果顯示:第一型血小板活化素主要表現於正常子宮頸基底上皮細胞層,如柵欄(我們命名為“第一型血小板活化素柵欄”)一般阻止血管新生的出現。當子宮頸上皮細胞由低階鱗狀上皮內病變(LSIL)進入至高階鱗狀上皮內病變(HSIL)時,此柵欄發生崩解,與血管新生表現型的出現是同時發生的。由這樣的結果我們推測,第一型血小板活化素扮演抑制血管新生作用的調控角色。血管新生作用開始於子宮頸癌化過程中的早期,與增殖異常的上皮組織中發生第一型血小板活化素的下調節有相關。
    基質作用(stroma reaction)是指腫瘤癌化過程中,基質由本來抑制轉為幫助上皮細胞成長,形成適合腫瘤成長環境的反應。因為,第一型血小板活化素除了已知抑制血管新生的角色外,同時也扮演著影響其他基質細胞(如纖維母細胞等)的生理作用的角色。所以,我們假設第一型血小板活化素可以經由抑制基質反應,進而達到抑制腫瘤成長。可能的作用機轉是經由抑制纖維母細胞的活性(移動性、侵襲性等生物特性)、以及抑制基質標記表現量。在本研究中我們探討:一:在臨床子宮頸癌及其癌前病變檢體中,檢視第一型血小板活化素的表現量與基質標記表現量之相關性;二:藉由免疫不全鼠(SCID mice)的異體腫瘤移植實驗,探討第一型血小板活化素經由抑制血管新生,以及基質反應而達到抗腫瘤成長的能力;三:探討第一型血小板活化素經由抑制肌纖維母細胞(活化型纖維母細胞)的移動力、侵襲力,達到抑制基質反應的能力。實驗結果顯示:一、在臨床病人檢體的免疫組織化學染色中發現,第一型血小板活化素表現量消失,會同時合併兩種基質標記α-SMA與 desmin過度表現。顯示在子宮頸癌化過程中,第一型血小板活化素與腫瘤基質反應有關連性。二、經由轉染第一型血小板活化素進入子宮頸癌細胞株(SiHa),建立第一型血小板活化素過度表現的子宮頸癌細胞株(SiHa-TSP-1)。在體外模式中,具有抑制血管新生作用的生理功能。同時在免疫不全鼠的異體腫瘤移植實驗中,第一型血小板活化素過度表現可以經由降低腫瘤血管生長以及減少基質標記α-SMA與desmin的表現,達到抑制腫瘤生長的作用。三、經由轉染建立第一型血小板活化素過度表現的纖維母細胞株(NIH3T3-TSP-1)或是外加純化的第一型血小板活化素至纖維母細胞株(NIH3T3)中,發現第一型血小板活化素並不會直接影響纖維母細胞株(NIH3T3)之α-SMA與desmin蛋白質的表現量。在乙型變型性成長因子(transforming growth factor β, TGF-β)處理的情況下(乙型變型性成長因子,會增加纖維母細胞的活化作用及其細胞分化及α-SMA與 desmin過度表現),第一型血小板活化素也沒有抑制作用。相對地,第一型血小板活化素會明顯抑制乙型變型性成長因子處理纖維母細胞株(NIH3T3)後所增加纖維細胞移動力,並抑制金屬蛋白酶-2 (MMP-2)的活性及侵襲癌細胞群的能力。至於作用的細胞種類,不論是經由轉染至子宮頸癌細胞株中(SiHa-TSP-1)或是直接外加純化的第一型血小板活化素至子宮頸癌細胞株中時,對NIH3T3細胞株的侵襲癌細胞群的能力沒有影響。相對地,經由轉染至纖維母細胞株(NIH3T3-TSP-1)或是外加純化的第一型血小板活化素至纖維母細胞株(NIH3T3)中,對NIH3T3細胞株的侵襲癌細胞群的能力皆有影響。
    綜合這些結果,我們發現第一型血小板活化素具有抑制基質反應功能的新角色。第一型血小板活化素會抑制免疫不全鼠異體移植腫瘤形成模式中基質標記的表現,與臨床病人子宮頸病變檢體基質標記的表現相符合。第一型血小板活化素經由抑制肌纖維母細胞(非宮頸癌細胞)移動力及侵襲能力,達到抑制基質反應並可能回復腫瘤基質反應到正常狀態。在未來,藉由控制腫瘤基質微環境,可能可以提高治療癌症的有效能力。

    The acquisition of an angiogenic phenotype (angiogenic switch) is essential for cervical carcinogenesis. The angiogenic switch is balanced by the angiogenic activators and inhibitors. Thrombospondin-1 (TSP-1) is an endogenous angiogenic inhibitor with multiple functional domains and interacting receptors. Our study was firstly aimed to examine the spatial and temporal relationship of TSP-1 expression in patients with squamous cell carcinoma of uterine cervix and its precursor lesions, and to correlate its expression with tumor angiogenesis. Our results indicate the disruption of TSP-1 fence (the expression of TSP-1 in basal epithelia) and the switch to angiogenic phenotype occurred concordantly during the transition from low grade squamous intraepithelial lesion (LSIL) into high grade squamous intraepithelial lesion (HSIL). This concordance suggests that TSP-1 play a role in the regulation of angiogenic switch during cervical carcinogenesis. We conclude that the onset of angiogenesis is an early event in cervical carcinogenesis due, in part, to the down-regulation of TSP-1 by the dysplastic epithelium.
    Stroma reaction (also called stromagenesis) is a host reaction of stroma cells that, when induced in cancer, produces a progressive and permissive mesenchymal microenvironment, thereby supporting tumor progress. In addition to the well-known angiogenesis inhibitor, TSP-1 has been shown to exert different biological functions on various stromal cell types, e.g. fibroblasts. Therefore, we hypothesized that TSP-1 may play a role in stroma reaction, characterized by fibroblast activation. We firstly tried to elucidate the correlation between the TSP-1 expression and the overexpression of stroma markers in human cervical lesions; secondly, we tried to elucidate whether TSP-1 can exhibit its anti-tumor effects through the angio-inhibitory effects and the ability to inhibit tumor stroma reaction in SCID mice xenotransplant model; thirdly, we tried to elucidate whether TSP-1 can change the stroma reaction by inhibiting the migration and invasive ability of myofibroblast (activated fibroblasts) from invading tumor cell cluster. Our results revealed: First, immunohistochemistry staining of human clinical specimens showed the disappearance of TSP-1 coincided with the emergence of the overexpression of two stromal markers, α-SMA and desmin, in a stepwise pattern. Second, transfection of SiHa cervical cancer cells with a plasmid expressing the TSP-1 protein exhibited anti-angiogenic activity in vitro, and resulted in reduced tumor growth in SCID mice, which was accompanied by a decrease in tumor vascularization and lower expressions of α-SMA and desmin than those in the vector controls. Third, transfection with TSP-1 and purified TSP-1 added to NIH3T3 cells did not alter the protein levels of α-SMA and desmin which was increased by transforming growth factor β (TGF-β), a potent fibroblast activation and transdifferentiation factor, but significantly inhibited matrix metalloprotease-2 (MMP-2) activity. The increased migration ability and the invasive ability into tumor cluster of TGF-β-treated-NIH3T3 cells were dose-dependently inhibited by TSP-1. In contrast, ectopic TSP-1 expression in SiHa cells has little effect on the invasive ability of the NIH3T3 cells.
    Together, these data demonstrate that TSP-1 possesses a novel role to reduce the expression of stromal markers in both human clinical specimens, and an in vivo tumor model. The inhibitory ability of TSP-1 to reverse stroma reaction could be partly attributed to the blockage of myofibroblasts from invading cancer. By targeting the tumor-stroma microenvironment, treatment effectiveness could be increased.

    Thesis Contents 中文摘要 1 Abstract 3 致謝Acknowledgement 5 Thesis Contents 9 Table list 14 Figure list 15 Abbreviations 16 Chapter 1 Background 17 1.1 TUMOR ANGIOGENESIS OVERVIEW. 17 1.1.1 Tumor growth is angiogenesis dependent. 17 1.1.2 Angiogenic activators and inhibitors are produced by tumor and host cells, respectively 18 1.1.3 Angiogenic switch depends on the balance of angiogenic activators and inhibitors 18 1.1.4 The angiogenic process relies on a complex tumor-host interaction 20 1.2 ANGIOGENESIS IN CERVICAL CARCINOGENESIS 21 1.2.1 Angiogenesis plays an important role in cervical carcinogenesis. 21 1.2.2 Timing of angiogenic switch in cervical carcinogenesis 22 1.3 THROMBOSPODIN (TSP) 23 1.3.1 Gene function of thrombospondin 1 (TSP-1) 23 1.3.2 TSP-1 is a matricellular protein with multiple receptors and diverse functions 25 1.3.3 TSP-1 and clinical cancer prognosis 28 1.4 MATRIX METALLOPROTEASES (MMPS) AND TUMOR PROGRESSION 28 1.4.1 MMPs in angiogenesis and tumor progression 28 1.4.2 TSP-1 can modulate the matrix degradation by changing the MMPs 30 1.5 STROMA REACTION AND FIBROBLAST ACTIVATION DURING CARCINOGENESIS 31 1.5.1 The invasion process of cancer cells is associated with stroma reaction 31 1.5.2 Stroma reaction is characterized by the fibroblast activation 33 Chapter 2 Materials and Methods 36 2.1 MATERIALS AND METHODS IN CHAPTER 3 36 2.1.1 Sample selections 36 2.1.2 Immunohistochemical (IHC) staining 36 2.1.3 Microvessel density (MVD) in different cervical lesions 37 2.1.4 TSP-1 expression in different cervical lesions 37 2.1.5 Statistical analysis 38 2.2 MATERIAL AND METHODS IN CHAPTER 4 38 2.2.1 Sample selections 38 2.2.2 Immunohistochemical staining and scoring system 39 2.2.3 Cell cultures and transfection 40 2.2.4 Immunoblotting 41 2.2.5 Matrigel angiogenesis assay 41 2.2.6 Animal models 41 2.2.7 Fibroblast activation 42 2.2.8 Cell migration assay and MMPs zymography 42 2.2.9 Matrigel multi-cellular co-culture invasion assay of activated fibroblasts 43 2.2.10 Statistical analysis 43 Chapter 3 TSP-1 acts as a fence to inhibit angiogenesis that occurs during cervical carcinogenesis 45 3.1 SUMMARY 45 3.2 INTRODUCTION 47 3.3 RESULTS 48 3.3.1 MVD during cervical carcinogenesis 48 3.3.2 TSP-1 expression during cervical carcinogenesis 49 3.3.3 Association of MVD and TSP-1 49 3.4 DISCUSSION 51 Chapter 4 A novel role of TSP-1 in cervical carcinogenesis: Inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer 55 4.1 SUMMARY 55 4.2 INTRODUCTION 57 4.3 SPECIFIC AIMS AND STRATEGIES: 59 4.4 RESULTS 63 4.4.1 The downregulation of TSP-1 coincides with the upregulation of stroma markers during cervical carcinogenesis 63 4.4.2 TSP-1 inhibits angiogenesis, tumor development and SCC-induced stromal reaction in vivo 63 4.4.3 TSP-1 does not downregulate α-SMA and desmin expression but inhibits MMP-2 activity 64 4.4.4 TSP-1 inhibits the migration of untreated and TGF-β treated NIH3T3 cells 65 4.4.5 TSP-1 inhibits activated fibroblasts from invading tumor cell cluster 66 4.5 DISCUSSION 68 Chapter 5 Discussion 73 5.1 HOW DOES TSP-1 REGULATE ANGIOGENESIS IN CERVICAL NEOPLASM 73 5.1.1 The roles of angiogenic activators in cervical neoplasm 73 5.1.2 TSP-1 may play a comparative role to VEGF 73 5.1.3 TSP-1 specifically induces endothelial cell apoptosis 75 5.1.4 TSP-1 acts as “an angiogenic fence” during cervical carcinogenesis 76 5.1.5 TSP-1 may influence angiogenesis by changing the ECM 77 5.1.6 Do TSP-1 or other angiogenic inhibitors play a physiologic gatekeeper role in cancer prevention 78 5.2 MVD AND OTHER MODALITIES IN EVALUATION OF ANGIOGENESIS STATUS 79 5.2.1 The usefulness of MVD in assessing angiogenesis 79 5.2.2 MVD used as a prognostic indicator in cervical neoplasm 80 5.2.3 MVD may not be an indicator of anti-angiogenic treatment efficacy 81 5.2.4 Other models for angiogenesis study 82 5.3 ANTI-ANGIOGENIC THERAPY OFFERS A PARADIGM SHIFT FOR ANTI-CANCER THERAPY 85 5.3.1 Tumor vasculature as a therapeutic target 85 5.3.2 Low-dose ‘metronic’ chemotherapy is anti-angiogenic 87 5.3.3 TSP-1 plays the angio-inhibitory roles via a mediator of the low-dose metronomic chemotherapy, in addition to direct endothelial targeting 88 5.4 HOST STROMA IS AN ACTIVE PARTICIPANT DURING TUMOR PROGRESSION 89 5.4.1 Myofibroblasts in host stroma stimulate cancer invasion 89 5.4.2 Myofibroblasts themselves are invasive 90 5.5 FACTORS ACTING ON FIBROBLAST TRANS-DIFFERENTIATION AND ACTIVATION 92 5.5.1 Factors that enhance fibroblasts activation and transdifferentiation 92 5.5.2 Factors that inhibit fibroblasts activation and transdifferentiation 95 Chapter 6 Conclusion and implications 98 6.1 TUMOR ANGIOGENESIS CAN BE USED AS A THERAPEUTIC TARGET 98 6.2 STROMA REACTION CAN BE USED AS A THERAPEUTIC TARGET 99 6.3 CONCLUSION 100 Tables 129 Figures 133 Appendix- supplementary articles and manuscripts 146 S.1 (Review) Angiogenesis, thrombospondin-1, and cervical carcinogenesis 146 S.2 Tumor/normal counterpart microvessel density ratio has a better correlation with clinicopathologic parameters in endometrial carcinoma than tumor microvessel density alone 147 S.3 TSP-1/ApoE and CD47/ApoE doubly null mice are protected from neointima formation in response to carotid injury but not from atherosclerosis 149 S.4 Her2/neu overexpression is correlated with TSP-1-related angiogenesis and TSP-1-unrelated lymphangiogenesis in breast cancer 151 Publications during 2000-2008 153 I. TSP-1 IN TUMOR ANGIOGENESIS AND STROMA REACTION 153 II. UROGYNECOLOGY AND MINIMALLY INVASIVE GYNECOLOGY 153 III. EDUCATIONAL ARTICLES 155 簡歷 157 Curriculum Vitae 159

    References
    1. Abulafia O, Triest WE, Sherer DM. Angiogenesis in squamous cell carcinoma in situ and microinvasive carcinoma of the uterine cervix. Obstet Gynecol 88(6):927-932;1996.
    2. Abulafia O, Triest WE, Sherer DM. Angiogenesis in malignancies of the female genital tract. Gynecol Oncol 72(2):220-231;1999.
    3. Achilles EG, Fernandez A, Allred EN, Kisker O, Udagawa T, Beecken WD, et al. Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for "no take" of human tumors in mice. J Natl Cancer Inst 93(14):1075-1081;2001.
    4. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47(12):3239-3245;1987.
    5. Albo D, Shinohara T, Tuszynski GP. Up-regulation of matrix metalloproteinase 9 by thrombospondin 1 in gastric cancer. J Surg Res 108(1):51-60;2002.
    6. Alves F, Borchers U, Padge B, Augustin H, Nebendahl K, Kloppel G, et al. Inhibitory effect of a matrix metalloproteinase inhibitor on growth and spread of human pancreatic ductal adenocarcinoma evaluated in an orthotopic severe combined immunodeficient (SCID) mouse model. Cancer Lett 165(2):161-170;2001.
    7. Amatangelo MD, Bassi DE, Klein-Szanto AJ, Cukierman E. Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol 167(2):475-488;2005.
    8. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 116(Pt 2):217-224;2003.
    9. Asch AS, Tepler J, Silbiger S, Nachman RL. Cellular attachment to thrombospondin. Cooperative interactions between receptor systems. J Biol Chem 266(3):1740-1745;1991.
    10. Baenziger NL, Brodie GN, Majerus PW. A thrombin-sensitive protein of human platelet membranes. Proc Natl Acad Sci U S A 68(1):240-243;1971.
    11. Barcellos-Hoff MH and Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60(5):1254-1260;2000.
    12. Bein K and Simons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 275(41):32167-32173;2000.
    13. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737-744;2000.
    14. Bertin N, Clezardin P, Kubiak R, Frappart L. Thrombospondin-1 and -2 messenger RNA expression in normal, benign, and neoplastic human breast tissues: correlation with prognostic factors, tumor angiogenesis, and fibroblastic desmoplasia. Cancer Res 57(3):396-399;1997.
    15. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63(15):4342-4346;2003.
    16. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848-851;2004.
    17. Bierie B and Moses HL. TGF-beta and cancer. Cytokine Growth Factor Rev 17(1-2):29-40;2006.
    18. Bisacchi D, Benelli R, Vanzetto C, Ferrari N, Tosetti F, Albini A. Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. Cancer Detect Prev 27(3):229-238;2003.
    19. Bissell MJ and Radisky D. Putting tumours in context. Nat Rev Cancer 1(1):46-54;2001.
    20. Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci U S A 100(22):12917-12922;2003.
    21. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62(23):6938-6943;2002.
    22. Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404-407;1997.
    23. Bornstein P. Thrombospondins: structure and regulation of expression. FASEB J 6(14):3290-3299;1992.
    24. Bornstein P. Matricellular proteins: an overview. Matrix Biol 19(7):555-556;2000.
    25. Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest 107(8):929-934;2001.
    26. Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z. Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol 19(7):557-568;2000a.
    27. Bornstein P, Kyriakides TR, Yang Z, Armstrong LC, Birk DE. Thrombospondin 2 modulates collagen fibrillogenesis and angiogenesis. J Investig Dermatol Symp Proc 5(1):61-66;2000b.
    28. Bornstein P and Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14(5):608-616;2002.
    29. Bouck N. Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells 2(6):179-185;1990.
    30. Bremer GL, Tiebosch AT, van der Putten HW, Schouten HJ, de Haan J, Arends JW. Tumor angiogenesis: an independent prognostic parameter in cervical cancer. Am J Obstet Gynecol 174(1 Pt 1):126-131;1996.
    31. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683-693;1996.
    32. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60(7):1878-1886;2000.
    33. Brown EJ and Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11(3):130-135;2001.
    34. Bunone G, Vigneri P, Mariani L, Buto S, Collini P, Pilotti S, et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 155(6):1967-1976;1999.
    35. Bussolati B, Assenzio B, Deregibus MC, Camussi G. The proangiogenic phenotype of human tumor-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med 84(10):852-863;2006.
    36. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci 22(7):251-256;1997.
    37. Calzada MJ, Zhou L, Sipes JM, Zhang J, Krutzsch HC, Iruela-Arispe ML, et al. Alpha4beta1 integrin mediates selective endothelial cell responses to thrombospondins 1 and 2 in vitro and modulates angiogenesis in vivo. Circ Res 94(4):462-470;2004.
    38. Campbell SC, Volpert OV, Ivanovich M, Bouck NP. Molecular mediators of angiogenesis in bladder cancer. Cancer Res 58(6):1298-1304;1998.
    39. Cantu De Leon D, Lopez-Graniel C, Frias Mendivil M, Chanona Vilchis G, Gomez C, De La Garza Salazar J. Significance of microvascular density (MVD) in cervical cancer recurrence. Int J Gynecol Cancer 13(6):856-862;2003.
    40. Carmeliet P and Jain RK. Angiogenesis in cancer and other diseases. Nature 407(6801):249-257;2000.
    41. Castle V, Varani J, Fligiel S, Prochownik EV, Dixit V. Antisense-mediated reduction in thrombospondin reverses the malignant phenotype of a human squamous carcinoma. J Clin Invest 87(6):1883-1888;1991.
    42. Castle VP, Ou X, O'Rourke K, Dixit VM. High level thrombospondin 1 expression in two NIH 3T3 cloned lines confers serum- and anchorage-independent growth. J Biol Chem 268(4):2899-2903;1993.
    43. Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biol 19(7):597-614;2000.
    44. Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE, et al. CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 120(Pt 12):2053-2065;2007.
    45. Chen S, Takanashi S, Zhang Q, Xiong W, Zhu S, Peters EC, et al. Reversine increases the plasticity of lineage-committed mammalian cells. Proc Natl Acad Sci U S A 104(25):10482-10487;2007.
    46. Chen S, Zhang Q, Wu X, Schultz PG, Ding S. Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126(2):410-411;2004.
    47. Cheng WF, Chen CA, Lee CN, Wei LH, Hsieh FJ, Hsieh CY. Vascular endothelial growth factor and prognosis of cervical carcinoma. Obstet Gynecol 96(5 Pt 1):721-726;2000.
    48. Cheng WF, Lee CN, Chu JS, Chen CA, Chen TM, Shau WY, et al. Vascularity index as a novel parameter for the in vivo assessment of angiogenesis in patients with cervical carcinoma. Cancer 85(3):651-657;1999.
    49. Chlenski A, Guerrero LJ, Yang Q, Tian Y, Peddinti R, Salwen HR, et al. SPARC enhances tumor stroma formation and prevents fibroblast activation. Oncogene;2007a.
    50. Chlenski A, Guerrero LJ, Yang Q, Tian Y, Peddinti R, Salwen HR, et al. SPARC enhances tumor stroma formation and prevents fibroblast activation. Oncogene 26(31):4513-4522;2007b.
    51. Chou CY, Shen MR, Wu SN. Volume-sensitive chloride channels associated with human cervical carcinogenesis. Cancer Res 55(24):6077-6083;1995.
    52. Chou CY, Wang ST, Kuo HC, Tzeng CC, Yao BL. Serum level of squamous cell carcinoma antigen and tumor size are useful to identify preoperatively patients at high risk of cervical cancer. Cancer 74(9):2497-2501;1994.
    53. Cintorino M, Bellizzi de Marco E, Leoncini P, Tripodi SA, Xu LJ, Sappino AP, et al. Expression of alpha-smooth-muscle actin in stromal cells of the uterine cervix during epithelial neoplastic changes. Int J Cancer 47(6):843-846;1991.
    54. Clezardin P, Frappart L, Clerget M, Pechoux C, Delmas PD. Expression of thrombospondin (TSP1) and its receptors (CD36 and CD51) in normal, hyperplastic, and neoplastic human breast. Cancer Res 53(6):1421-1430;1993.
    55. Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60(9):2520-2526;2000.
    56. Cooper RA, Carrington BM, Loncaster JA, Todd SM, Davidson SE, Logue JP, et al. Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57(1):53-59;2000.
    57. Coussens LM and Werb Z. Inflammation and cancer. Nature 420(6917):860-867;2002.
    58. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93(7):1159-1170;1998.
    59. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582-1584;1994.
    60. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138(3):707-717;1997.
    61. de Fraipont F, El Atifi M, Gicquel C, Bertagna X, Chambaz EM, Feige JJ. Expression of the angiogenesis markers vascular endothelial growth factor-A, thrombospondin-1, and platelet-derived endothelial cell growth factor in human sporadic adrenocortical tumors: correlation with genotypic alterations. J Clin Endocrinol Metab 85(12):4734-4741;2000.
    62. de Fraipont F, Nicholson AC, Feige JJ, Van Meir EG. Thrombospondins and tumor angiogenesis. Trends Mol Med 7(9):401-407;2001.
    63. De Wever O and Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 200(4):429-447;2003.
    64. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. Faseb J 18(9):1016-1018;2004a.
    65. De Wever O, Westbroek W, Verloes A, Bloemen N, Bracke M, Gespach C, et al. Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta or wounding. J Cell Sci 117(Pt 20):4691-4703;2004b.
    66. Dellas A, Moch H, Schultheiss E, Feichter G, Almendral AC, Gudat F, et al. Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations. Gynecol Oncol 67(1):27-33;1997.
    67. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103-111;1993.
    68. Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48(5-6):509-517;2004.
    69. Di Leo S, Caschetto S, Garozzo G, Nuciforo G, Cassaro N, Meli MT, et al. Angiogenesis as a prognostic factor in cervical carcinoma. Eur J Gynaecol Oncol 19(2):158-162;1998.
    70. Dimanche-Boitrel MT, Vakaet L, Jr., Pujuguet P, Chauffert B, Martin MS, Hammann A, et al. In vivo and in vitro invasiveness of a rat colon-cancer cell line maintaining E-cadherin expression: an enhancing role of tumor-associated myofibroblasts. Int J Cancer 56(4):512-521;1994.
    71. Dixit VM, Hennessy SW, Grant GA, Rotwein P, Frazier WA. Characterization of a cDNA encoding the heparin and collagen binding domains of human thrombospondin. Proc Natl Acad Sci U S A 83(15):5449-5453;1986.
    72. Dobbs SP, Hewett PW, Johnson IR, Carmichael J, Murray JC. Angiogenesis is associated with vascular endothelial growth factor expression in cervical intraepithelial neoplasia. Br J Cancer 76(11):1410-1415;1997.
    73. Doyen V, Rubio M, Braun D, Nakajima T, Abe J, Saito H, et al. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 198(8):1277-1283;2003.
    74. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60(5):1388-1393;2000.
    75. Ellenson LH and Wu TC. Focus on endometrial and cervical cancer. Cancer Cell 5(6):533-538;2004.
    76. Ezzell C. Starving tumors of their lifeblood. Sci Am 279(4):33-34;1998.
    77. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A 97(8):3884-3889;2000.
    78. Feldman AL, Alexander HR, Jr., Bartlett DL, Kranda KC, Miller MS, Costouros NG, et al. A prospective analysis of plasma endostatin levels in colorectal cancer patients with liver metastases. Ann Surg Oncol 8(9):741-745;2001a.
    79. Feldman AL, Alexander HR, Jr., Yang JC, Linehan WM, Eyler RA, Miller MS, et al. Prospective analysis of circulating endostatin levels in patients with renal cell carcinoma. Cancer 95(8):1637-1643;2002.
    80. Feldman AL, Pak H, Yang JC, Alexander HR, Jr., Libutti SK. Serum endostatin levels are elevated in patients with soft tissue sarcoma. Cancer 91(8):1525-1529;2001b.
    81. Feldman AL, Tamarkin L, Paciotti GF, Simpson BW, Linehan WM, Yang JC, et al. Serum endostatin levels are elevated and correlate with serum vascular endothelial growth factor levels in patients with stage IV clear cell renal cancer. Clin Cancer Res 6(12):4628-4634;2000.
    82. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3(6):453-458;2003.
    83. Fidler IJ and Ellis LM. Chemotherapeutic drugs--more really is not better. Nat Med 6(5):500-502;2000.
    84. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182-1186;1971.
    85. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 3(2):65-71;1992.
    86. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27-31;1995a.
    87. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333(26):1757-1763;1995b.
    88. Folkman J. Tumor angiogenesis and tissue factor. Nat Med 2(2):167-168;1996.
    89. Folkman J. Is tissue mass regulated by vascular endothelial cells? Prostate as the first evidence. Endocrinology 139(2):441-442;1998.
    90. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 13(2):159-167;2003a.
    91. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 3(7):643-651;2003b.
    92. Folkman J, Hahnfeldt P, Hlatky L. Cancer: looking outside the genome. Nat Rev Mol Cell Biol 1(1):76-79;2000.
    93. Fontana A, Filleur S, Guglielmi J, Frappart L, Bruno-Bossio G, Boissier S, et al. Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1 in vivo. Int J Cancer 116(5):686-691;2005.
    94. Framson PE and Sage EH. SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92(4):679-690;2004.
    95. Franck-Lissbrant I, Haggstrom S, Damber JE, Bergh A. Testosterone stimulates angiogenesis and vascular regrowth in the ventral prostate in castrated adult rats. Endocrinology 139(2):451-456;1998.
    96. Frazier WA. Thrombospondins. Curr Opin Cell Biol 3(5):792-799;1991.
    97. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715-725;1998.
    98. Gasparini G. Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2(12):733-740;2001.
    99. Gasparini G and Harris AL. Does improved control of tumour growth require an anti-cancer therapy targeting both neoplastic and intratumoral endothelial cells? Eur J Cancer 30A(2):201-206;1994.
    100. Graflund M, Sorbe B, Hussein A, Bryne M, Karlsson M. The prognostic value of histopathologic grading parameters and microvessel density in patients with early squamous cell carcinoma of the uterine cervix. Int J Gynecol Cancer 12(1):32-41;2002.
    101. Grossfeld GD, Ginsberg DA, Stein JP, Bochner BH, Esrig D, Groshen S, et al. Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst 89(3):219-227;1997.
    102. Guedez L, Rivera AM, Salloum R, Miller ML, Diegmueller JJ, Bungay PM, et al. Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. Am J Pathol 162(5):1431-1439;2003.
    103. Guidi AJ, Abu-Jawdeh G, Berse B, Jackman RW, Tognazzi K, Dvorak HF, et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 87(16):1237-1245;1995.
    104. Guidolin D, Vacca A, Nussdorfer GG, Ribatti D. A new image analysis method based on topological and fractal parameters to evaluate the angiostatic activity of docetaxel by using the Matrigel assay in vitro. Microvasc Res 67(2):117-124;2004.
    105. Guo N, Krutzsch HC, Inman JK, Roberts DD. Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57(9):1735-1742;1997.
    106. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59(19):4770-4775;1999.
    107. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105(8):1045-1047;2000.
    108. Hanahan D and Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353-364;1996.
    109. Hanahan D and Weinberg RA. The hallmarks of cancer. Cell 100(1):57-70;2000.
    110. Hasebe T, Sasaki S, Imoto S, Ochiai A. Proliferative activity of intratumoral fibroblasts is closely correlated with lymph node and distant organ metastases of invasive ductal carcinoma of the breast. Am J Pathol 156(5):1701-1710;2000.
    111. Hawighorst H. Dynamic MR imaging in cervical carcinoma. Radiology 213(2):617-618;1999.
    112. Hawighorst T, Oura H, Streit M, Janes L, Nguyen L, Brown LF, et al. Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but not tumor lymphangiogenesis and lymphatic metastasis in transgenic mice. Oncogene 21(52):7945-7956;2002.
    113. Hawighorst T, Velasco P, Streit M, Hong YK, Kyriakides TR, Brown LF, et al. Thrombospondin-2 plays a protective role in multistep carcinogenesis: a novel host anti-tumor defense mechanism. EMBO J 20(11):2631-2640;2001.
    114. Hayashido Y, Nakashima M, Urabe K, Yoshioka H, Yoshioka Y, Hamana T, et al. Role of stromal thrombospondin-1 in motility and proteolytic activity of oral squamous cell carcinoma cells. Int J Mol Med 12(4):447-452;2003.
    115. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 94(12):883-893;2002.
    116. Hlatky L, Tsionou C, Hahnfeldt P, Coleman CN. Mammary fibroblasts may influence breast tumor angiogenesis via hypoxia-induced vascular endothelial growth factor up-regulation and protein expression. Cancer Res 54(23):6083-6086;1994.
    117. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509-4515;1996.
    118. Hsu KF, Su JM, Huang SC, Cheng YM, Kang CY, Shen MR, et al. Three-dimensional power Doppler imaging of early-stage cervical cancer. Ultrasound Obstet Gynecol 24(6):664-671;2004.
    119. Hsu SC, Volpert OV, Steck PA, Mikkelsen T, Polverini PJ, Rao S, et al. Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56(24):5684-5691;1996.
    120. Hugo C. The thrombospondin 1-TGF-beta axis in fibrotic renal disease. Nephrol Dial Transplant 18(7):1241-1245;2003.
    121. Isenberg JS, Calzada MJ, Zhou L, Guo N, Lawler J, Wang XQ, et al. Endogenous thrombospondin-1 is not necessary for proliferation but is permissive for vascular smooth muscle cell responses to platelet-derived growth factor. Matrix Biol 24(2):110-123;2005a.
    122. Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci U S A 102(37):13141-13146;2005b.
    123. Ishii G, Sangai T, Ito T, Hasebe T, Endoh Y, Sasaki H, et al. In vivo and in vitro characterization of human fibroblasts recruited selectively into human cancer stroma. Int J Cancer 117(2):212-220;2005.
    124. Jendraschak E and Sage EH. Regulation of angiogenesis by SPARC and angiostatin: implications for tumor cell biology. Semin Cancer Biol 7(3):139-146;1996.
    125. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6(1):41-48;2000.
    126. Jin RJ, Kwak C, Lee SG, Lee CH, Soo CG, Park MS, et al. The application of an anti-angiogenic gene (thrombospondin-1) in the treatment of human prostate cancer xenografts. Cancer Gene Ther 7(12):1537-1542;2000.
    127. Kakeji Y and Teicher BA. Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 15(1):39-48;1997.
    128. Kalas W, Yu JL, Milsom C, Rosenfeld J, Benezra R, Bornstein P, et al. Oncogenes and Angiogenesis: down-regulation of thrombospondin-1 in normal fibroblasts exposed to factors from cancer cells harboring mutant ras. Cancer Res 65(19):8878-8886;2005.
    129. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422-433;2003.
    130. Kamen BA, Rubin E, Aisner J, Glatstein E. High-time chemotherapy or high time for low dose. J Clin Oncol 18(16):2935-2937;2000.
    131. Kawahara N, Ono M, Taguchi K, Okamoto M, Shimada M, Takenaka K, et al. Enhanced expression of thrombospondin-1 and hypovascularity in human cholangiocarcinoma. Hepatology 28(6):1512-1517;1998.
    132. Kawataki T, Naganuma H, Sasaki A, Yoshikawa H, Tasaka K, Nukui H. Correlation of thrombospondin-1 and transforming growth factor-beta expression with malignancy of glioma. Neuropathology 20(3):161-169;2000.
    133. Kazuno M, Tokunaga T, Oshika Y, Tanaka Y, Tsugane R, Kijima H, et al. Thrombospondin-2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer 35(3):502-506;1999.
    134. Kenny PA and Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 107(5):688-695;2003.
    135. Kerbel R and Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727-739;2002.
    136. Kerbel RS and Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4(6):423-436;2004.
    137. Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G, et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20(1-2):79-86;2001.
    138. Kinzler KW and Vogelstein B. Landscaping the cancer terrain. Science 280(5366):1036-1037;1998.
    139. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105(8):R15-24;2000.
    140. Kodama J, Hashimoto I, Seki N, Hongo A, Yoshinouchi M, Okuda H, et al. Thrombospondin-1 and -2 messenger RNA expression in invasive cervical cancer: correlation with angiogenesis and prognosis. Clin Cancer Res 7(9):2826-2831;2001.
    141. Kohno Y, Iwanari O, Kitao M. Prognostic importance of histologic vascular density in cervical cancer treated with hypertensive intraarterial chemotherapy. Cancer 72(8):2394-2400;1993.
    142. Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res 266(1):74-86;2001.
    143. Kunz-Schughart LA and Knuechel R. Tumor-associated fibroblasts (part I): Active stromal participants in tumor development and progression? Histol Histopathol 17(2):599-621;2002a.
    144. Kunz-Schughart LA and Knuechel R. Tumor-associated fibroblasts (part II): Functional impact on tumor tissue. Histol Histopathol 17(2):623-637;2002b.
    145. Kunz-Schughart LA, Wenninger S, Neumeier T, Seidl P, Knuechel R. Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-beta 1. Am J Physiol Cell Physiol 284(1):C209-219;2003.
    146. Kuroi K and Toi M. Circulating angiogenesis regulators in cancer patients. Int J Biol Markers 16(1):5-26;2001.
    147. Kwak C, Jin RJ, Lee C, Park MS, Lee SE. Thrombospondin-1, vascular endothelial growth factor expression and their relationship with p53 status in prostate cancer and benign prostatic hyperplasia. BJU Int 89(3):303-309;2002.
    148. Lawler J. The functions of thrombospondin-1 and-2. Curr Opin Cell Biol 12(5):634-640;2000.
    149. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci U S A 90(3):999-1003;1993.
    150. Libutti SK. Do angiogenesis inhibitors perform a physiologic gatekeeper role in cancer prevention? Cancer J 10(1):12-14;2004.
    151. Liotta LA and Kohn EC. The microenvironment of the tumour-host interface. Nature 411(6835):375-379;2001.
    152. Liotta LA, Thorgeirsson UP, Garbisa S. Role of collagenases in tumor cell invasion. Cancer Metastasis Rev 1(4):277-288;1982.
    153. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194-1201;2001.
    154. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295(5552):140-143;2002.
    155. Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173(996):548-550;1971.
    156. Manna PP and Frazier WA. CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res 64(3):1026-1036;2004.
    157. Mayr NA, Hawighorst H, Yuh WT, Essig M, Magnotta VA, Knopp MV. MR microcirculation assessment in cervical cancer: correlations with histomorphological tumor markers and clinical outcome. J Magn Reson Imaging 10(3):267-276;1999.
    158. Meyerhardt JA and Mayer RJ. Systemic therapy for colorectal cancer. N Engl J Med 352(5):476-487;2005.
    159. Meyer-Ter-Vehn T, Gebhardt S, Sebald W, Buttmann M, Grehn F, Schlunck G, et al. p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 47(4):1500-1509;2006.
    160. Miao WM, Seng WL, Duquette M, Lawler P, Laus C, Lawler J. Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and -independent mechanisms. Cancer Res 61(21):7830-7839;2001.
    161. Micke P and Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45 Suppl 2S163-175;2004.
    162. Miller KD, Sweeney CJ, Sledge GW, Jr. Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19(4):1195-1206;2001.
    163. Miyanaga K, Kato Y, Nakamura T, Matsumura M, Amaya H, Horiuchi T, et al. Expression and role of thrombospondin-1 in colorectal cancer. Anticancer Res 22(6C):3941-3948;2002.
    164. Mueller MM and Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839-849;2004.
    165. Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37(3):209-218;2000.
    166. Ohta Y, Shridhar V, Kalemkerian GP, Bright RK, Watanabe Y, Pass HI. Thrombospondin-1 expression and clinical implications in malignant pleural mesothelioma. Cancer 85(12):2570-2576;1999.
    167. Ohtani Y, Kijima H, Dowaki S, Kashiwagi H, Tobita K, Tsukui M, et al. Stromal expression of thrombospondin-1 is correlated with growth and metastasis of human gallbladder carcinoma. Int J Oncol 15(3):453-457;1999.
    168. Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37(3):674-685;2003.
    169. O'Leary JJ, Shapiro RL, Ren CJ, Chuang N, Cohen HW, Potmesil M. Antiangiogenic effects of camptothecin analogues 9-amino-20(S)-camptothecin, topotecan, and CPT-11 studied in the mouse cornea model. Clin Cancer Res 5(1):181-187;1999.
    170. Opdenakker G and Van Damme J. The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. Int J Dev Biol 48(5-6):519-527;2004.
    171. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277-285;1997.
    172. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59471-482;1994.
    173. Orr AW, Pallero MA, Xiong WC, Murphy-Ullrich JE. Thrombospondin induces RhoA inactivation through FAK-dependent signaling to stimulate focal adhesion disassembly. J Biol Chem 279(47):48983-48992;2004.
    174. Oshiba G, Kijima H, Himeno S, Kenmochi T, Kise Y, Tanaka H, et al. Stromal thrombospondin-1 expression is correlated with progression of esophageal squamous cell carcinomas. Anticancer Res 19(5C):4375-4378;1999.
    175. Oshika Y, Masuda K, Tokunaga T, Hatanaka H, Kamiya T, Abe Y, et al. Thrombospondin 2 gene expression is correlated with decreased vascularity in non-small cell lung cancer. Clin Cancer Res 4(7):1785-1788;1998.
    176. Ozatli D, Kocoglu H, Haznedaroglu IC, Kosar A, Buyukasik Y, Ozcebe O, et al. Circulating thrombomodulin, thrombospondin, and fibronectin in acute myeloblastic leukemias. Haematologia (Budap) 29(4):277-283;1999.
    177. Paget S. Distribution of secondary growths in cancer of the breast. Lancet 1571-573;1889.
    178. Park CC, Bissell MJ, Barcellos-Hoff MH. The influence of the microenvironment on the malignant phenotype. Mol Med Today 6(8):324-329;2000.
    179. Pinto AP and Crum CP. Natural history of cervical neoplasia: defining progression and its consequence. Clin Obstet Gynecol 43(2):352-362;2000.
    180. Pratt DA, Miller WR, Dawes J. Thrombospondin in malignant and non-malignant breast tissue. Eur J Cancer Clin Oncol 25(2):343-350;1989.
    181. Presta M, Rusnati M, Belleri M, Morbidelli L, Ziche M, Ribatti D. Purine analogue 6-methylmercaptopurine riboside inhibits early and late phases of the angiogenesis process. Cancer Res 59(10):2417-2424;1999.
    182. Qian X, Rothman VL, Nicosia RF, Tuszynski GP. Expression of thrombospondin-1 in human pancreatic adenocarcinomas: role in matrix metalloproteinase-9 production. Pathol Oncol Res 7(4):251-259;2001.
    183. Qian X, Wang TN, Rothman VL, Nicosia RF, Tuszynski GP. Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res 235(2):403-412;1997.
    184. Radisky DC and Bissell MJ. Cancer. Respect thy neighbor! Science 303(5659):775-777;2004.
    185. Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 5(1):24-33;2000.
    186. Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, Fowler WC, Jr., et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 58(17):3765-3768;1998.
    187. Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56(3):345-355;1989.
    188. Reiher FK, Volpert OV, Jimenez B, Crawford SE, Dinney CP, Henkin J, et al. Inhibition of tumor growth by systemic treatment with thrombospondin-1 peptide mimetics. Int J Cancer 98(5):682-689;2002.
    189. Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta 1765(2):178-188;2006.
    190. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8(1):27-34;2002.
    191. Rice A and Quinn CM. Angiogenesis, thrombospondin, and ductal carcinoma in situ of the breast. J Clin Pathol 55(8):569-574;2002.
    192. Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci U S A 102(37):13147-13152;2005.
    193. Risau W. Mechanisms of angiogenesis. Nature 386(6626):671-674;1997.
    194. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98(22):12485-12490;2001.
    195. Ronnov-Jessen L and Petersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68(6):696-707;1993.
    196. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2):859-873;1995.
    197. Ronnov-Jessen L, Van Deurs B, Nielsen M, Petersen OW. Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture. In Vitro Cell Dev Biol 28A(4):273-283;1992.
    198. Rutgers JL, Mattox TF, Vargas MP. Angiogenesis in uterine cervical squamous cell carcinoma. Int J Gynecol Pathol 14(2):114-118;1995.
    199. Schneider BP and Miller KD. Angiogenesis of breast cancer. J Clin Oncol 23(8):1782-1790;2005.
    200. Seemayer TA, Lagace R, Schurch W, Tremblay G. Myofibroblasts in the stroma of invasive and metastatic carcinoma: a possible host response to neoplasia. Am J Surg Pathol 3(6):525-533;1979.
    201. Senger DR, Brown LF, Claffey KP, Dvorak HF. Vascular permeability factor, tumor angiogenesis and stroma generation. Invasion Metastasis 14(1-6):385-394;1994.
    202. Sheibani N and Frazier WA. Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proc Natl Acad Sci U S A 92(15):6788-6792;1995.
    203. Sheibani N and Frazier WA. Repression of thrombospondin-1 expression, a natural inhibitor of angiogenesis, in polyoma middle T transformed NIH3T3 cells. Cancer Lett 107(1):45-52;1996.
    204. Sheibani N and Frazier WA. Thrombospondin-1, PECAM-1, and regulation of angiogenesis. Histol Histopathol 14(1):285-294;1999.
    205. Shen MR, Chou CY, Hsu KF, Hsu YM, Chiu WT, Tang MJ, et al. KCl cotransport is an important modulator of human cervical cancer growth and invasion. J Biol Chem 278(41):39941-39950;2003.
    206. Shi J, Badri KR, Choudhury R, Schuger L. P311-induced myofibroblasts exhibit ameboid-like migration through RalA activation. Exp Cell Res 312(17):3432-3442;2006.
    207. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223(4642):1296-1299;1984.
    208. Sipes JM, Krutzsch HC, Lawler J, Roberts DD. Cooperation between thrombospondin-1 type 1 repeat peptides and alpha(v)beta(3) integrin ligands to promote melanoma cell spreading and focal adhesion kinase phosphorylation. J Biol Chem 274(32):22755-22762;1999.
    209. Siracha E, Sirachy J, Pappova N. Vascularization and radiocurability in cancer of the uterine cervix. Neoplasma 29183-188;1994.
    210. Smith-McCune KK and Weidner N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 54(3):800-804;1994.
    211. Sotiropoulou M, Diakomanolis E, Elsheikh A, Loutradis D, Markaki S, Michalas S. Angiogenic properties of carcinoma in situ and microinvasive carcinoma of the uterine cervix. Eur J Gynaecol Oncol 25(2):219-221;2004.
    212. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science 289(5482):1197-1202;2000.
    213. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103(9):1237-1241;1999.
    214. Stetler-Stevenson WG, Hewitt R, Corcoran M. Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic. Semin Cancer Biol 7(3):147-154;1996.
    215. Streit M, Velasco P, Brown LF, Skobe M, Richard L, Riccardi L, et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 155(2):441-452;1999.
    216. Streit M, Velasco P, Riccardi L, Spencer L, Brown LF, Janes L, et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. Embo J 19(13):3272-3282;2000.
    217. Swaney JS, Roth DM, Olson ER, Naugle JE, Meszaros JG, Insel PA. Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc Natl Acad Sci U S A 102(2):437-442;2005.
    218. Taraboletti G, Morbidelli L, Donnini S, Parenti A, Granger HJ, Giavazzi R, et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. Faseb J 14(12):1674-1676;2000.
    219. Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, El Atifi-Borel M, et al. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191(10):1789-1798;2000.
    220. Tokunaga T, Nakamura M, Oshika Y, Abe Y, Ozeki Y, Fukushima Y, et al. Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Br J Cancer 79(2):354-359;1999.
    221. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122(2):497-511;1993.
    222. Tuszynski GP and Nicosia RF. The role of thrombospondin-1 in tumor progression and angiogenesis. Bioessays 18(1):71-76;1996.
    223. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 62(11):3298-3307;2002a.
    224. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR. Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 62(21):6021-6025;2002b.
    225. Udagawa T, Fernandez A, Achilles EG, Folkman J, D'Amato RJ. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. Faseb J 16(11):1361-1370;2002.
    226. Ueda T, Yuh WT, Taoka T. Clinical application of perfusion and diffusion MR imaging in acute ischemic stroke. J Magn Reson Imaging 10(3):305-309;1999.
    227. Vallejo AN, Mugge LO, Klimiuk PA, Weyand CM, Goronzy JJ. Central role of thrombospondin-1 in the activation and clonal expansion of inflammatory T cells. J Immunol 164(6):2947-2954;2000.
    228. Vepachedu R, Gorska MM, Singhania N, Cosgrove GP, Brown KK, Alam R. Unc119 regulates myofibroblast differentiation through the activation of Fyn and the p38 MAPK pathway. J Immunol 179(1):682-690;2007.
    229. Vieira SC, Zeferino LC, Da Silva BB, Aparecida Pinto G, Vassallo J, Carasan GA, et al. Quantification of angiogenesis in cervical cancer: a comparison among three endothelial cell markers. Gynecol Oncol 93(1):121-124;2004.
    230. Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, et al. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2(6):473-483;2002.
    231. Volpert OV, Stellmach V, Bouck N. The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat 36(2):119-126;1995.
    232. Walter-Yohrling J, Pratt BM, Ledbetter S, Teicher BA. Myofibroblasts enable invasion of endothelial cells into three-dimensional tumor cell clusters: a novel in vitro tumor model. Cancer Chemother Pharmacol 52(4):263-269;2003.
    233. Wang J, Lou P, Lesniewski R, Henkin J. Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anticancer Drugs 14(1):13-19;2003.
    234. Wang TN, Albo D, Tuszynski GP. Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 132(2):220-225;2002.
    235. Wang TN, Qian X, Granick MS, Solomon MP, Rothman VL, Berger DH, et al. Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J Surg Res 63(1):39-43;1996.
    236. Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3(3):219-231;2003.
    237. Weber WA, Haubner R, Vabuliene E, Kuhnast B, Wester HJ, Schwaiger M. Tumor angiogenesis targeting using imaging agents. Q J Nucl Med 45(2):179-182;2001.
    238. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143(2):401-409;1993.
    239. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84(24):1875-1887;1992.
    240. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 54(24):6504-6511;1994.
    241. West CM, Cooper RA, Loncaster JA, Wilks DP, Bromley M. Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res 61(7):2907-2910;2001.
    242. Willhauck MJ, Mirancea N, Vosseler S, Pavesio A, Boukamp P, Mueller MM, et al. Reversion of tumor phenotype in surface transplants of skin SCC cells by scaffold-induced stroma modulation. Carcinogenesis 28(3):595-610;2007.
    243. Wolf JK and Ramirez PT. The molecular biology of cervical cancer. Cancer Invest 19(6):621-629;2001.
    244. Wu MP, Tzeng CC, Wu LW, Huang KF, Chou CY. Thrombospondin-1 acts as a fence to inhibit angiogenesis that occurs during cervical carcinogenesis. Cancer J 10(1):27-32;2004.
    245. Wu MP, Young MJ, Tzeng CC, Tzeng CR, Huang KF, Wu LW, et al. A novel role of TSP-1 in cervical carcinogenesis: Inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer. Carcinogenesis In Press;2008.
    246. Yamauchi M, Imajoh-Ohmi S, Shibuya M. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci 98(9):1491-1497;2007.
    247. Yang Q, Tian Y, Liu S, Zeine R, Chlenski A, Salwen HR, et al. Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma. Cancer Res 67(4):1716-1724;2007.
    248. Yang Z, Kyriakides TR, Bornstein P. Matricellular proteins as modulators of cell-matrix interactions: adhesive defect in thrombospondin 2-null fibroblasts is a consequence of increased levels of matrix metalloproteinase-2. Mol Biol Cell 11(10):3353-3364;2000.
    249. Yoshida Y, Oshika Y, Fukushima Y, Tokunaga T, Hatanaka H, Kijima H, et al. Expression of angiostatic factors in colorectal cancer. Int J Oncol 15(6):1221-1225;1999.
    250. Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 59(2):191-195;1994.
    251. Zetter BR. Cell motility in angiogenesis and tumor metastasis. Cancer Invest 8(6):669-671;1990.
    252. Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM, et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 60(13):3655-3661;2000.

    下載圖示 校內:立即公開
    校外:2008-05-13公開
    QR CODE