| 研究生: |
賴銘賢 Lai, Ming-Shien |
|---|---|
| 論文名稱: |
一氧化碳對總膽管結紮老鼠肝臟傷害的預防研究 Hepatoprotective effects of carbon monoxide in bile duct-ligated mice |
| 指導教授: |
謝淑珠
Shiesh, Shu-Chu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 一氧化碳 、總膽管結紮 |
| 外文關鍵詞: | carbon monoxide, bile duct ligation |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膽汁淤積指的是膽汁從肝臟排放至十二指腸內受阻的病態情形,發生在許多肝臟疾病中。越來越多的證據指出膽汁淤積引起的肝臟傷害與肝內的氧化壓力提高有關係。最近的研究也指出斥水性的膽酸所引起的肝臟細胞凋亡與內質網壓力的提高有關係。一氧化碳(CO),是第一型血基質氧化酶 (heme oxygenase-1, HO-1) 分解血基質形成的產物之一。許多研究都指出CO,在抗發炎、抗凋亡的機制中扮演很重要的角色。在體內以及體外的實驗模式中,給予其CO,都具有保護肝臟細胞的作用。因此,本篇研究的目的是利用膽管結紮動動物模式,探討CO 是否提供保護作用;以及其在調控氧化壓力及內質網壓力的關係。利用ICR 小鼠總膽管結紮(BDL)來引發膽汁淤積 Dichloromethane (DCM) 可以被細胞色素CYP2E1 和CYP2B1 代謝,形成CO 與二氧化碳,因此被當作是一種CO 的前趨藥物。小鼠於手術前兩個小時開始,及術後每日口服給予DCM,並分別在第一、四、七天進行犧牲取樣。以血清肝功能指數和組織病理切片來評估DCM 的給予對肝臟的影響。為了進一步探討DCM 作用的機轉,測定血清中的總抗氧化能力和肝臟caspase-3 活性的情形。也利用西方墨點法來偵測肝臟內質網壓力和細胞凋亡的指標性蛋白質的表現。在連續DCM 七天的處理下,膽道結紮小鼠血清之AST 及ALT 活性有顯著的下降 (AST, 463±58 vs. 1270±90 U/L,p<0.05;ALT, 406±25 vs. 961±83 U/L, p<0.05)。在肝臟組織切片的結果也顯示DCM 可以減小凝固性壞死的區域,及減少凋亡細胞的數量。DCM 也使結紮一天小鼠肝臟萃取液的caspase-3 活性下降 (469±21 vs. 1286±93 flu/hr.μg, p<0.05)。而在結紮第七天,DCM 顯著地提高了血清總抗氧化能力 (755±129 vs. 260±19 μmol/L, p<0.05)。肝臟萃取液中,內質網壓力指標性蛋白質 (Grp78 及CHOP) 的表現在結紮七天有明顯上升,而DCM 的給予使之明顯的降低。總結,DCM 的給予可以減少肝臟因膽汁淤積所引起的肝細胞壞死及凋亡,其作用機轉可能是經由降低肝臟的氧化力,內質網壓力,以及減少細胞凋亡路徑的啟動而達成。
Cholestasis is a clinical syndrome resulting from the interruption in the formation and excretion of bile. Growing evidence has suggested that the elevation of intrahepatic oxidative stress plays an important role in cholestasis-induced liver injury. Recent studies indicate that hydrophobic bile acid-induced hepatocytes apoptosis is associated with the elevation of endoplasmic reticulum (ER) stress. Carbon monoxide (CO), one of the products of heme oxygenase-1 (HO-1) mediated heme degradation, has been shown to play a crucial role in anti-inflammatory and anti-apoptotic protection. This study aimed to investigate the hepatoprotective effects of CO and evaluate its role in regulating oxidative and ER stress in cholestatic liver injury. Complete bile duct ligation (BDL) was performed
in male ICR mice to induced cholestasis. Dichloromethane (DCM) was used as a CO pro-drug. Daily oral administration of DCM was performed starting from 2 hours prior to the surgery. Mice were sacrificed at day-1, day-4, and day-7 after the surgery. Serum liver biochemistry tests and liver histology were examined to evaluate the effects of DCM on
liver damage. To further investigate the mechanism of DCM’s effects, serum total antioxidant capacity (TAC) and liver caspase-3 activity were determined. Expressions of
ER stress and apoptosis markers were determined by western blot analysis. Serum levels of AST and ALT were greatly elevated after bile duct ligation, and were significantly reduced by DCM treatment in the ligated mice at day-7 post ligation (AST, 463±58 vs. 1270±90 U/L, p<0.05;ALT, 406±25 vs. 961±83 U/L, p<0.05). Caspase-3 activity in the liver
homogenate were elevated in the BDL mice, and were reduced by DCM treatment at the fist day after ligation (469±21 vs. 1286±93 flu/hr.μg, p<0.05). This reduction of capsase-3
activity was also observed at day-4 and day-7 post ligation. Serum levels of TAC were reduced in the ligated mice, and were marked increased by DCM at day-7 post ligation (755±129 vs. 260±19 μmol/L, p<0.05). BDL induced overexpression of Grp78 and CHOP,whereas DCM treatment down-regulated the expression of these two ER stress markers at day-7 post ligation. DCM treatment also attenuated the coagulation necrosis in the liver of BDL mice, and less number of apoptotic cells were observed. In conclusion, CO administration provided liver protection against cholestasis-induced liver injury through the reduction of oxidative stress, ER stress, and apoptosis.
1. Zimmermann, A. (1997). Consequences of cholestasis from the pathologist's viewpoint. Schweiz Med Wochenschr, 127(19):812-820.
2. Trauner, M. (2008). Mechanisms of Cholestasis. Clin Liver Dis, 12(1):1-26.
3. Crawford, J. M. (1999). The Liver and Biliary Tract. In: Cotran, R. S., Kumar, V.
K., Collins, T. C., (Eds.), Robins Pathologic Basis of Disease (pp. 851-852).
Philadelphia : W.B. Saunders.
4. Oh, S.H., Yun, K.J., Nan, J.X., Sohn, D.H., Lee, B.H. (2003). Changes in expression and immunolocalization of protein associated with toxic bile salts-induced apoptosis in rat hepatocytes. Arch Toxicol, 77(2):110-115.
5. Jones, A., Schmucker, D., Renston, R., Murakami, T. (1980). The architecture of bile secretion: A morphological perspective of physiology. Dig Dis Sci, 25(8):609-629.
6. Greim, H., Trülzsch, D., Roboz, J., Dressler, K., Czygan, P., Hutterer, F., et al. (1972). Mechanism of cholestasis. Bile acids in normal rat livers and in those after bile duct ligation. Gastroenterology, 63(5):837-845.
7. Reinehr, R., Becker, S., Eberle, A., Grether-Beck, S., Häussinger, D. (2005) Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J Biol Chem, 280(29):27179-27194.
8. Miyoshi, H., Rust, C., Roberts, P.J., Burgart, L.J., Gores, G.J. (1999). Hepatocyte apoptosis after bile duct ligation in the mouse involves CD95. Gastroenterology,
117(3):669-677.
9. Reinehr, R., Becker, S., Keitel, V., Eberle, A., Grether-Beck, S., Häussinger, D. (2005). Bile salt-induced apoptosis involves NADPH oxidase isoform activation.
Gastroenterology, 129(6):2009–2031.
10. Sokol, R.J., Winkelhofer-Roob, B.M., Devereaux, M.W., McKim, J.M. (1995). Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology, 109(4): 1249-1256.
11. Sokol, R.J., McKim, J.M., Goff, M.C., Ruyle, S.Z., Devereaux, M.W., Han, D., Packer, L., Everson, G. (1998). Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochenodeoxycholic acid in the rat. Gastroenterology,114(1):164-174.
12. Krähenbühl, S., Talos, C., Fischer, S., Reichen, J. (1994). Toxicity of bile acids on the electron transport chain of isolated liver mitochondria. Hepatology, 19(2):471-479.
13. Nauseef, W.M. (2004). Assembly of the phagocyte NADPH oxidase. HistochemCell Biol, 122(4):277–291.
14. Gupta, S., Natarajan, R., Payne, S.G., Studer, E.J., Spiegel, S., Dent, P., et al. (2004). Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS
receptor activation in primary hepatocytes. Role of acidic sphingomyelinasemediated ceramide generation in FAS receptor activation. J Biol Chem, 279(7):5821-5828.
15. Ashkenazi, A., Dixit, V.M. (1998). Death receptors: signaling and modulation. Science, 281:1305-1308.
16. Kaufman, R.J. (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest, 110(10): 1389-1398.
17. Rutkowski, D.T., Kaufman, R.J. (2004). A trip to the ER: coping with stress. Trend cell boil, 14(1):20-28.
18. Xu, C., Bailly-Maitre, B., Reed, J.C. (2005). Endoplasmic reticulum stress:cell life and death decisions. J Clin Investig, 115(10):2656-2664.
19. Schroder, M., Kaufman, R.J. (2005). ER stress and the unfolded protein response. Mutat Res, 569(1):29-63.
20. Oyadomari, S., Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ, 11:381-389.
21. Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., et al. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell, 7(6):1165-1176.
22. Mencin, A., Seki, E., Osawa, Y., Kodama, Y., De Minicis, S., Knowles, M., Brenner, DA. (2007). Alpha-1 antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine model of cholestasis. Hepatology, 46:1443-1452.
23. Bernstein, H., Payne, C.M., Bernstein, C., Schneider, J., Beard, S.E., Crowley, C.L. (1999). Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate.Toxicol Lett, 108(1):37-46.
24. Tamaki, N., Hatano, E., Taura, K., Tada, M., Kodama, Yuzo., Nitta,T. (2008). CHOP deficiency attenuates cholestasis-induced liver fibrosis by reduction of
hepatocyte injury. Am J Physiol Gastrointest Liver Physiol, 294(2): 498-505.
25. Wise, C., Drabkin, D. (1964). Degradation of haemoglobin and hemin to biliverdin by a new cell-free system obtain from the hemophagous organ of dog placenta. Fed Proc, 23:323.
26. Tenhunen, R., Marver, H.S., Schmid, R. (1968). The enzymatic conversion of heme to bilirubin by microsomal heme oxgenase. Proc Natl Acad Sci USA, 61(2):748-755.
27. Yoshinaga, T., Sassa, S., Kappas, A. (1982). A comparative study of heme degradation by NADPH-cytochrome c reductase alone and by the complete heme oxygenase system. Distinctive aspects of heme degradation by NADPH cytochrome C reductase. J Biol Chem, 257(13):7794-7802.
28. Yoshida, T., Biro, P., Cohen, T., Muller, R.M., Shibahara, S. (1988). Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur J Biochem, 171(3): 457-461.
29. Tenhunen, R., Ross, M., Marver, H., Schmid, R. (1970). Reduced nicotinamideadenine dinucleotide phosphate dependent biliverdin reductase: partialpurification and characterization. Biochemistry, 9(2):298-303.
30. Otterbein, L.E., Choi, A.M. (2000). Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol, 279(6):1029-1037.
31. Tenhunen, R., Marver, H., Schmid, R. (1970). The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med, 75(3): 410-421.
32. Ishikawa, K., Takeuchi, N., Takahashi, S., Matera, K.M., Sato, M., Shibahara, S., et al. (1995). Heme oxygenase-2. Properties of the heme complex of the purified
tryptic fragment of recombinant human heme oxygenase-2. J Biol Chem, 270(11):6345-6350.
33. McCoubrey, W.K. Jr, Huang, T.J., Maines, M.D. (1997). Heme xygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved
in heme catalysis. J Biol Chem, 272:12568-12574.
34. Trakshel, G., Kutty, R., Maines, M. (1986). Purification and characterization of the major constitutive form of testicular heme oxygenase. The non-inducible isoform. J Biol Chem, 261(24):11131-11137.
35. Shikawa, K., Sato, M., Yoshida, T. (1991). Expression of rat heme oxygenase in Esherichia coli as a catalytically active, full length form that binds to bacterial membranes. Eur J Biochem, 202:161-165.
36. McCoubrey, W.K. Jr, Huang, T.J., Maines, M.D. (1997). Isolation andcharacterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem, 247(2):725-732.
37. Sassa, S., Kappas, A., Bernstein, S.E., Alvares, A.P. (1979). Heme biosynthesis and drug metabolism in mice with hereditary hemolytic anemia. Heme oxygenase induction as an adaptive response for maintaining cytochrome P-450 in chronic hemolysis. J Biol Chem, 254(3):729-735.
38. Durante, W., Kroll, M., Christodoulides, N., Peyton, K., Schafer, A. (1997). Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res, 80(4):557-564.
39. Alam, J., Camhi, S., Choi, A.M. (1995). Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J Biol Chem, 270: 11977-11984.
40. Alam, J., Cook, J.L. (2003). Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Res, 9(30): 2499-2511.
41. Inamdar, N.M., Ahn, Y.I., Alam, J. (1996). The heme-responsive element of the mouse heme oxygenase-1 gene is an extended AP-1 binding site that resembles the recognition sequences for MAF and NF-E2 transcription factors. Biochem Biophys Res Commun, 221(3): 570-576.
42. Kietzmann, T., Samoylenko, A., Immenschuh, S. (2003). Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the JNK and p38 pathways in primary cultures of rat hepatocytes. J Biol Chem, 278(20):
17927-17936.
43. Kronke, G., Bochkov, V.N., Huber, J., Gruber, F., Bluml, S., Furnkranz, A., et al. (2003). Oxidized phospholipids induce expression of human heme oxygenase-1
involving activation of cAMP-responsive element-binding protein. J Biol Chem, 278(51): 51006-51014.
44. Lavrovsky, Y., Schwartzman, M.L., Levere, R.D., Kappas, A., Abraham, N.G.(1994). Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci USA, 91(13):5987-5991.
45. Takeda, K., Ishizawa, S., Sato, M., Yoshida, T., Shibahara, S. (1994). Identification of a cis-acting element that is responsible for cadmium-mediated induction of the human heme oxygenase gene. J Biol Chem, 269(36): 22858-22867.
46. Venugopal, R., Jaiswal, A.K. (1998). Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene, 17(24): 3145-3156.
47. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying
enzyme genes through antioxidant response elements. Biochem Biophys Res Commun, 236(2): 313-322.
48. Levonen, A.L., Landar, A., Ramachandran, A., Ceaser, E.K., Dickinson, D.A., Zanoni, G. (2004). Cellular mechanisms of redox cell signalling: role of cysteine
modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J, 378(2): 373-382.
49. Alam, J., Killeen, E., Gong, P., Naquin, R., Hu, B., Stewart, D. (2003). Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am J Physiol Renal Physiol, 284(4):743-752.
50. Rushworth, S.A., Chen, X.L., Mackman, N., Ogborne, R.M., O’Connell MA. (2005). Lipopolysaccharide-induced heme oxygenase-1 expression in human monocytic cells is mediated via Nrf2 and protein kinase C. J Immunol, 175(7):
4408-4415.
51. Morse, D., Choi, A.M. (2002). Heme oxygenase-1: the "emerging molecule" has arrived. Am J Respir Cell Mol Biol, 27(1):8-16.
52. Elbirt, K.K., Whitmarsh, A.J., Davis, R.J. Bonkovsky, H.L. (1998). Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogenactivated protein kinases. J Biol Chem, 273(15): 8922-8931.
53. Kietzmann, T., Samoylenko, A., Immenschuh, S. (2003). Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the JNK and p38 pathways in primary cultures of rat hepatocytes. J Biol Chem, 278(20):
17927-17936.
54. Stocker, R., Glazer, A.N. Ames, B.N. (1987). Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci USA, 84(16): 5918-5922.
55. Llesuy, S.F., Tomaro, M.L. (1994). Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta, 1223(1):9-14.
56. Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N. and Ames, B.N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science, 235: 1043-1046.
57. Baranano, D.E., Rao, M., Ferris, C.D. Snyder, S.H. (2002). Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci, 99(25):16093-16098.
58. Halliwell, B., Gutteridge, J.M.C. (1999). Free Radicals in Biology and Medicine (3rd ed.). Oxford, UK: Oxford Univ.
59. Ryter, S., Tyrrell. R.M. (2000). The heme synthesis and degradation pathways,role in oxidant sensitivity. Heme oxygenase has both pro- and anti-oxidant properties. Free Radical Biol Med,28: 289-309.
60. Eisenstein, R.S., Garcia-Mayol, D., Pettingell, W., Munro, H.N. (1991). Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc Natl Acad Sci, 88(3):688-692.
61. Vile, G.F., Tyrrell, R.M. (1993). Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent
increase in ferritin. J Biol Chem, 268(20):14678-14681.
62. Ferris, C.D., Jaffrey, S.R., Sawa, A., Takahashi, M., Brady, S.D., Barrow, R.K., et al. (1999). Heme oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol, 1(3):152-157.
63. Baranano, D.E., Wolosker, H., Bae, B.I., Barrow, R.K., Snyder, S.H., Ferris, C.D. (2000). A mammalian iron ATPase induced by iron. J Biol Chem, 275(20):15166-15173.
64. Von Berg, R. (1999). Toxicology update. Carbon monoxide. J Appl Toxicol, 19(5):379-386.
65. Yoon, S.S., Macdonald, S.C., Parrish, R.G. (1998). Deaths from unintentional carbon monoxide poisoning and potential for prevention with carbon monoxide detectors. JAMA, 279(9): 685-687.
66. Moore, B.A., Overhaus, M., Whitcomb, J., Ifedigbo, E., Choi, A.M., Otterbein, L.E. (2005). Brief inhalation of low-dose carbon monoxide protects rodents and swine from postoperative ileus. Crit Care Med, 33(6):1317-1326.
67. Petrache, I., Otterbein, L.E., Alam, J., Wiegand, G.W., Choi, A.M. (2000). Heme oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol, 278(2): 312-319.
68. Otterbein, L.E., Bach, F.H., Alam, J., Soares, M., Tao, L.H., Wysk, M., et al. (2000). Carbon monoxide has anti-inflammatory effets involving the mitogen-activated protein kinase pathway. Nat Med, 6(4): 422-428.
69. Sarady, J.K., Zuckerbraun, B.S., Bilban, M., Wagner, O., Usheva, A., Liu, F., et al. (2004). Carbon monoxide protection against endotoxic shock involves reciprocal
effects on iNOS in the lung and liver. FASEB J. ,18(7):854-856.
70. Sawle, P., Foresti, R., Mann, B.E., Johnson, T.R., Green, C.J. Motterlini, R. (2005). Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine
macrophages. Br J Pharmacol, 145(6), 800-810.
71. Wagener, F.A., da Silva, J.L., Farley, T., de Witte, T., Kappas, A., Abraham, N.G.(1999). Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression. J Pharmacol Exp Ther, 291(1):416-423.
72. Soares, M.P., Seldon, M.P., Gregoire, I.P., Vassilevskaia, T., Berberat, P.O., Yu, J., et al. (2004). Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol, 172(6):3553-3563.
73. Brouard, S., Otterbein, L.E., Anrather, J., Tobiasch, E., Bach, F.H., Choi, A.M., et al. (2000). Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med, 192(7):1015-1026.
74. Silva, G., Cunha, A., Grégoire, I.P., Seldon, M.P., Soares, M.P. (2006). The Antiapoptotic Effect of Heme Oxygenase-1 in Endothelial Cells Involves the Degradation of p38α MAPK Isoform. J Immunol, 177(3): 1894-1903.
75. Brouard, S., Berberat, P.O., Tobiasch, E., Seldon, M.P., Bach, F.H., Soares, M.P. (2002). Heme oxygenase-1-derived carbon monoxide requires the activation of
transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem, 277(20): 17950-17961.
76. Takahashi, T., Shimizu, H., Akagi, R., Morita, K., Sassa, S. (2006). Heme Oxygenase-1:A New Drug Target in OxidativeTissue Injuries in Critically Ill Conditions. Drug Dev Res, 67:130-153.
77. Stonard, M.D., Poli, G., De Matteis, F. (1998). Stimulation of liver heme oxygenase in hexachlorobenzene-induced hepatic porphyria. Arch Toxicol, 72(6):355-361.
78. Bauer, I., Wanner, G.A., Rensing, H. (1998.) Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and stress-exposed rat liver. Hepatology, 27(3):829-838.
79. Montosi, G., Garuti, C., Martinelli, S., Pietrangelo, A. (1998). Hepatic stellate cells are not subjected to oxidant stress during iron-induced fibrogenesis in rodents. Hepatology, 27: 1611-1622.
80. Schiaffonati, L., Tiberio, L. (1997). Gene expression in liver after toxic injury: analysis of heat shock response and oxidative stressinducible genes. Liver, 17(4):183-191.
81. Chiu, H., Brittingham, J.A., Laskin, D.L. (2002). Differential induction of heme oxygenase-1 in macrophages and hepatocytes during acetaminophen-induced hepatotoxicity in the rat: effects of hemin and biliverdin. Toxicol Appl Pharmacol, 181(2):106-115.
82. Von Dobschuetz, E., Srchmidt, R., Scholtes, M., Thomusch, O., Schwer, C.I., Geiger, K.K., et al. (2008). Protective role of heme oxygenase-1 in pancreatic
microcirculatory dysfunction after ischemia/reperfusion in rats. Pancreas, 36(4):377-384.
83. Du, D., Chang, S., Chen, B., Zhou, H., Chen, Z.K. (2007). Adenovirus-mediated heme oxygenase transfer inhibits graft arteriosclerosis in rat aortic transplants.
Transplant Proc, 39(10):3446-3448.
84. Xia, Z.W., Sun, J.L., Zhong, W.W., Zhang, X.H., Zhang, Z.L. (2007). Heme oxygenase-1 improves the survival of discordant cardiac xenograft through its anti-inflammatory and anti-apoptotic effects. Pediatr Transplant, 11(8):850-859.
85. Tsui, T.Y., Lau, C.K., Ma, J., Wu, X., Wang, Y.Q., Farkas, S. (2005). rAAVmediated stable expression of heme oxygenase-1 in stellate cells: a new approach to attenuate liver fibrosis in rats. Hepatology, 42(2):335-342.
86. Liu, X.M., Chapman, G.B., Peyton, K.J., Schafer, A.I., Durante, W. (2002). Carbon monoxide inhibits apoptosis in vascular smooth muscle cells. Cardiovasc Res, 55(2):396-405.
87. Kim, K.M., Pae, H,P., Zheng, M., Park R., Kim, Y.M., Chung, H.T. (2007). Carbon Monoxide Induces Heme Oxygenase-1 via Activation of Protein Kinase R–Like
Endoplasmic Reticulum Kinase and Inhibits Endothelial Cell Apoptosis Triggered by Endoplasmic Reticulum Stress. Circ Res, 101(9):919-927.
88. Lee, G.H., Kim, H.K., Chae, S.W., Kim, D.S., Ha, K.C., Cuddy, M. (2007). Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression. J Biol Chem, 282(30): 21618-21628.
89. Cullinan, S.B., Zhang, D., Hannink, M. (2003). Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol, 23(20):7198-7209.
90. Winston H. (2002, September). Director Office of Environmental Health Hazard Assessment. Joan, E., Denton, Ph.D. Agency Secretary California EnvironmentalProtection Agency.
91. Andersen, M.E., Clewell, H.J. 3rd, Mahle, D.A., Gearhart, J.M. (1994). Gas uptake studies of deuterium isotope effects on dichloromethane metabolism in female B6C3F1 mice in vivo. Toxicol Appl Pharmacol, 128(1):158-165.
92. Ratney, R.S., Wegman, D.H., Elkins, H.B. (1974). In vivo conversion of methylene chloride to carbon monoxide. Arch Environ Health, 28(4):223-226.
93. Pankow, D., Matschiner, F., Weigmann, H.J. (1991). Influence of aromatic hydrocarbons on the metabolism of dichloromethane to carbon monoxide in rats.
Toxicology, 68(1):89-100.
94. Kim, S.K., Kim, Y.C. (1996). Effect of a single administration of benzene, toluene or m-xylene on carboxyhaemoglobin elevation and metabolism of dichloromethane in rats. J Appl Toxicol, 16(5):437-444.
95. Wirkner, K., Damme, B., Poelchen, W., Pankow, D. (1997). Effect of long-term ethanol pretreatment on the metabolism of dichloromethane to carbon monoxide in rats. Toxicol Appl Pharmacol, 143(1):83-88.
96. Sass, G., Seyfried, S., Parreira Soares, M., Yamashita, K., Kaczmarek, E., Neuhuber, W.L., et al. (2004). Cooperative effect of biliverdin and carbon monoxide on survival of mice in immune-mediated liver injury.Hepatology,
40(5):1128-1135.
97. Yerushalmi, B., Dahl, R., Devereaux, M.W., Gumpricht, E., Sokol, R.J. (2001). Bile acid- induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology, 33(3): 616-626.
98. Krähenbühl, S., Talos, C., Lauterburg, B.H., Reichen, J. (1995) Reduced antioxidative capacity in liver mitochondria from bile duct ligated rats. Hepatology, 22(2):607-12.
99. Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., Cosic, V. (2001). Measurement of total antioxidant capacity. J Clin Pathol, 54(5):356-361.
100. Jimbo, A., Fujita, E., Kouroko, Y., Ohnishi, J., Inohara, N., Kuida, K., et al.(2003). ER stress induces caspase-8 activation, stimulating cytochrome c release
and caspase-9 activation. Exp Cell Res, 283(2):156-166.
101. Rao, R.V., Castro-Obregon, S., Frankowski, H., chuler, M., Stoka, V., del Rio, G., et al. (2002). Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem, 277(24):21836-21842.
102. McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl-2 and perturbing the cellular redox stat. Mol Cell Biol, 21(4):
1249-1259.
103. Pae, H.O., Oh, G,S,, Choi, B.M., Chae, S.C., Kim, Y.M., Chung, K.R., et al. (2004) Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol, 172:4744-4751.
104. Sarady, J.K., Otterbein, S.L., Liu, F., Otterbein, L.E., Choi, A.M.K. (2002) Carbon monoxide modulates endotoxin-induced production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol, Biol 27:739–745.
105. Milosz, A., Settle, W.A. (1975). New approach to the treatment of sickle cell anemia. Res Commun Chem Pathol Pharmacol, 12:137-146.
106. Chauveau, C., Bouchet, D., Roussel, J.C., Mathieu, P., Braudeau, C., Renaudin, K., et al. (2002). Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am J Transplant, 2(7):581-592.
107. Ke, B., Buelow, R., Shen, X.D., Melinek, J., Amersi, F., Gao, F., et al. (2002). Heme oxygenase 1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway. Hum Gene Ther, 13(10):1189-1199.