簡易檢索 / 詳目顯示

研究生: 林上雯
Lin, Shang-Wen
論文名稱: Nalbuphine 前驅藥物皮膚局部劑型之開發研究
Development of Topical Delivery System for Nalbuphine Prodrug
指導教授: 蔡瑞真
Tsai, Jui-Chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 奈米結構脂質載體局部藥物遞送nalbuphine前驅藥物止癢
外文關鍵詞: nanostructured lipid carrier, topical delivery, nalbuphine, prodrug, antipruritus
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性搔癢症為導致病患生活品質下降的一個因素。研究指出鴉片類受體對於誘發及緩解搔癢有其作用,且許多混合型鴉片類受體促效及抑制劑被發現可有效緩解搔癢症。Nalbuphine (NA) 有 μ 受體拮抗及 κ 受體促效之作用,並且有研究指出其具有緩解鴉片導致的搔癢副作用之功能。NCKU125 為一個 NA 的前驅藥物,其高脂溶性及高分子量使其劑型設計以及經皮藥物遞送有所困難。研究指出奈米脂質顆粒遞藥系統可增加高脂溶性藥物的溶解度並增加藥物的皮膚穿透量,其中的奈米結構脂質載體 (nanostructured lipid carrier, NLC)由於其高物理安定性、藥物保護作用、以及其多種皮膚穿透途徑及易於製備等優點被選擇用於製備NCKU125 的遞藥系統。本研究之目的為研發包載 NCKU125 的 NLC 處方,並藉處方設計以解決 NCKU125 在水性環境中的安定性問題以及藉 NLC 之特性增加皮膚穿透速率,且該處方需有延長藥物釋出的特性以及適當的止癢效果。
    本研究首先藉NCKU125 之溶解度篩選賦形劑,並評估 NCKU125 於液態油賦形劑中之安定性。利用熱均質法製備NCKU125-NLC 處方,並評估其粒徑、界面電位、酸鹼度、包覆率,以及28 天的室溫儲存之安定性,同時使用穿透式電子顯微鏡 (TEM) 觀察 NLC 之形態。體外 NCKU125 之藥物釋出試驗以及小鼠皮膚穿透試驗使用經皮吸收儀 (flow-through diffusion cell) 進行,製備包覆尼羅紅 (Nile red, NR) 的 NLC 以觀察 NLC 在皮膚中之分佈情形。建立 Substance P 誘導的小鼠抓癢模式,用於評估 NCKU125-NLC 之止癢效果。
    經溶解度篩選結果,本研究選擇以 Geleol 和 Precirol ATO5 為固態油,以 oleic acid、oleyl alcohol、和 capyrol 90 為液態油,以水和 5 mM Na2HPO4 為水相,開發出 8 種包載 0.5% NCKU125 的 NLC 處方,其中以 capryol 90 液態油之處方— PCS (Precirol ATO5/ capryol 90/ 5 mM Na2HPO4) 及 GCS (Geleol/ capryol 90/ 5 mM Na2HPO4) 具有 NCKU125 在 NLC 處方中的室溫儲存安定性。各個含有 0.5% NCKU125 之處方粒徑在 200~400 nm 之間且 PDI 小於 0.3,ζ 電位及 pH 值分別為 -25~-50 mV 以及 4.9~7.0,而在 liquid cell-TEM 觀察下呈現分散之顆粒形態。所有 NLC 處方皆有超過 97% 的 NCKU125 包覆率,而體外藥物釋出試驗顯示各處方皆具有延長釋出的特性,且以 oleyl alcohol 和 capryol 90 為液態油處方的藥物釋出量大於含 oleic acid 的處方。體外皮膚穿透試驗顯示 PCS 及 GCS 分別在有限劑量及無限劑量之試驗中有最高的藥物穿透量,且NR-NLC 相較於NR 油溶液有較強的NR螢光分佈至毛囊中。皮膚投予 GCS 和 PCS 處方於 substance P 誘導之小鼠抓癢模式相較於 NLC 控制組均可降低抓癢次數,但未達到顯著性差異,且止癢效果隨時間延長而降低。
    綜合上述,本研究成功開發出可包覆 NCKU125 之 NLC 處方,其中以 PCS 及 GCS 處方具有最佳的 NCKU125 化學安定性,並且有延長釋出的特性及較高之 NCKU125 釋出量與皮膚穿透量,同時在 substance P 誘導搔癢小鼠模式中具些許止癢效果。如何更有效的延長止癢之時間以及效果,為未來進一步研究的方向。

    Summary

    Nalbuphine is one of the opioid analgesics that possess mixed agonist/ antagonist effects. It is clinically used to manage moderate to severe pain and off-label used in the management of opioid-induced pruritus. NCKU125 is a nalbuphine prodrug synthesized to overcome its short elimination half-life and to prolong its action duration. The objective of this study was to develop NCKU125-loaded nanostructured lipid carrier (NLC) formulations with good stability, sustained drug release characteristics, and sufficient antipruritic effect. NLC formulations loaded with NCKU125 were developed with good entrapment efficiencies using Geleol/ Precirol ATO5 as solid lipids, oleic acid/ oleyl alcohol/ capryol 90 as oils, poloxamer 188 as surfactant, and water/ 5 mM Na2HPO4 as aqueous phase. The particle size, ζ-potential, and pH of these formulations were characterized. TEM images revealed spherical and dispersed particles of NLCs. Excipients were shown to influence the stability of NCKU125, with capryol 90 being the most suitable oil for NCKU125’s stability. The in vitro release study demonstrated the sustained drug release characteristics of the NLC formulations. Skin penetration study has shown NCKU125 and nalbuphine penetrated through the skin, and delivery of Nile red from NLC into hair follicles was observed under fluorescence microscope. Topical application of two NCKU125-NLC formulations reduced scratching numbers in substance P-induced scratching mouse model, but was not significantly different from NLC control. In conclusion, topical NCKU125-NLC formulations were successfully developed with good NCKU125 stability, sustained release characteristics, and some antipruritic effect.

    Key words: nanostructured lipid carrier, topical delivery, nalbuphine, prodrug, antipruritus

    Introduction
    Chronic pruritus is a factor that influences patients’ quality of life. Studies have suggested that opioid receptors have a role in the induction and alleviation of pruritus. Many opioid receptor mixed agonist/ antagonists were shown to be effective in alleviating pruritus, and one of them is nalbuphine. Nalbuphine is a μ receptor antagonist and κ receptor agonist, which is clinically used to manage moderate to severe pain and off-label used in the management of opioid-induced pruritus. Its application for alleviating chronic pruritus such as uremic pruritus is under development. With its short elimination half-life (2~3 hours), several prodrugs were synthesized to prolong its duration of action. NCKU125 is one of the prodrugs that were synthesized. With its large molecular weight and high lipophilicity, formulating it will be difficult and poor skin permeation can be expected. The main drug delivery routes across the skin include intercellular permeation and hair follicle penetration. Nano-sized formulations, however, may help enhancing solubility of highly lipophilic drugs and facilitating drug penetration through hair follicles. Lipid-based nanoparticles were considered to be a choice for topical formulation due to their lipophilic characteristics. Nanostructured lipid carrier (NLC) is one of the lipid-based nanoparticles widely investigated for topical drug delivery systems. It is a colloidal dispersion system that uses lipid and oil mixture as nanoparticle matrix and disperses in aqueous phase. It has the advantages of high drug loading capacity, good physicochemical stability, and ease of preparation. Studies have shown that NLCs facilitate intercellular permeation as well as hair follicle transport, and thus enhancing drug permeation efficiency. NLC can be a potential delivery system which not only make formulating NCKU125 possible, but drug permeation enhancement can also be expected. The objective of this study was to develop NCKU125-loaded NLC formulations which would present good NCKU125 stability, sustained release characteristics, and sufficient antipruritic effect.

    Methods
    Various excipients including lipids, oils, and surfactants were screened for NCKU125’s solubility. The stability of NCKU125 in oils was assessed. HPLC was employed to quantify amounts of NCKU125 and NA. NLC formulations were prepared by melting and mixing of lipid components containing NCKU125 with aqueous phase containing poloxamer 188, followed by homogenization and sonification. The prepared NLCs were evaluated for their particle characteristics, drug entrapment efficiency and stability in NLCs, and their morphology under TEM. The in vitro drug release and drug penetration through mouse skin were evaluated using Franz diffusion cell. Skin distribution of NLCs was examined under fluorescence microscopy following application of Nile red (NR) -NLC onto mouse skin. Antipruritic effect of NCKU125-NLCs was assessed in substance P-induced scratching mouse model.

    Results
    NLCs containing 0.5% NCKU125 were prepared using Geleol (G)/ Precirol ATO5 (P) as solid lipids, oleic acid (A)/ oleyl alcohol (L)/ capryol 90 (C) as oils, poloxamer 188 as surfactant, and water (W)/ 5 mM Na2HPO4 (S) as aqueous phase. Excipients were shown to influence the stability of NCKU125, with capryol 90 being the most suitable oil for NCKU125 stability. Particle size of NLC formulations ranged from 200~400 nm. ζ-potential and pH ranged from -25~-50 mV and 4.9~7.0, respectively. The entrapment efficiencies of all the formulations were greater than 97%. GCS (Geleol/ capryol 90/ 5 mM Na2¬HPO4) and PCS (Precirol ATO5/ capryol 90/ 5 mM Na2HPO4) were shown to be the most stable formulations for NCKU125, with drug content approximating 100% after 28 days of storage. Under liquid cell-TEM, PCS was shown as a dispersed, spherical particulate system. GCS, PCS, GLS, and PLS formulations released more drug in 24 hours than GAW, PAW, GAS, and PAS formulations. All of them demonstrated sustained drug release characteristics. Moreover, the highest skin penetration efficiency was shown with PCS and GCS when dosed with different amount of formulations. Fluorescence microscope revealed more intensive NR fluorescence in the hair follicles from NR-NLC than NR oil solution. Topical application of PCS- and GCS-NCKU125 reduced scratching numbers in substance P-induced scratching mouse model, but was not significantly different from NLC control. The antipruritic effects of these formulations gradually diminished with prolonged time after application.

    Conclusion
    NCKU125-NLC formulations were developed, and GCS as well as PCS have been shown with good NCKU125 stability, highest amount of sustained drug release and skin penetration efficiency, and also some antipruritic effect. Further investigation may be required to optimize NCKU125-NLC formulations to achieve sufficient antipruritic effect in the future.

    中文摘要 I 英文摘要 III 誌謝 VI 目錄 VIII 表目錄 X 圖目錄 XI 縮寫表 XIII 第壹章 文獻回顧 1 第一節 搔癢症 1 一、 搔癢機轉與鴉片類受體 1 二、 搔癢症的處置方法 4 第二節 NALBUPHINE 和 NCKU125 6 一、 Nalbuphine 之臨床應用 6 二、 Nalbuphine 的體內藥物動力學 7 三、 Nalbuphine 前驅藥物及劑型研究 7 四、 NCKU125 簡介 9 第三節 皮膚結構及藥物遞送途徑 10 一、 皮膚結構 10 二、 藥物經皮吸收途徑 11 三、 毛囊結構及其於經皮吸收之優勢 12 第四節 皮膚局部藥物遞送系統 14 一、 皮膚藥物遞送系統 14 二、 奈米脂質藥物遞送系統 15 三、 奈米結構脂質載體 17 四、 安定性及溶解度改善方法 22 第貳章 研究目的 24 第參章 研究材料與方法 25 第一節 研究材料 25 一、 實驗動物 25 二、 試劑、藥品、耗材 25 三、 儀器 26 第二節 研究方法 28 一、 同時分析 Nalbuphine 及 NCKU125 之 HPLC 方法 28 二、 NCKU125 溶解度測試 29 三、 NCKU125 於液態油中安定性試驗 30 四、 奈米結構脂質載體製備預試驗 30 五、 製備奈米結構脂質載體 32 六、 NCKU125 於 NLC 中含量測定及安定性試驗 32 七、 劑型特性評估 33 八、 體外藥物釋出及皮膚穿透試驗 34 九、 奈米結構脂質載體皮膚分佈試驗 36 十、 體內止癢效果評估 36 第三節 統計分析 38 第肆章 研究結果 39 第一節 NALBUPHINE 及 NCKU125 分析方法之建立 39 第二節 NCKU125 賦形劑溶解度 42 第三節 NCKU125 於液態油安定性 44 第四節 劑型特性評估 49 第五節 NCKU125於 NLC 中之含量與安定性 55 第六節 體外藥物釋出 58 第七節 體外藥物穿皮情形 61 第八節 螢光奈米結構脂質載體皮膚分佈情形 70 第九節 活體止癢效果 71 第伍章 討論 74 第一節 NLC 處方特性 74 第二節 液態油與 NLC 處方對 NCKU125 之安定性影響 77 第三節 NLC 之藥物釋出機制 80 第四節 NLC 之藥物皮膚穿透機制 83 第五節 NCKU125-NLC 之結構模型假設 86 第六節 NCKU125-NLC 之止癢效果 87 第陸章 結論 89 參考文獻 91

    Abe, K., Kobayashi, K., Yoshino, S., Taguchi, K., Nojima, H. 2015. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice. Drug and Chemical Toxicology, 38, 167-173.
    Andrade, L. M., Silva, L. A. D., Krawczyk-Santos, A. P., Amorim, Icsm, Rocha, Pbrd, Lima, E. M., Anjos, J. L. V., Alonso, A., Marreto, R. N., Taveira, S. F. 2017. Improved tacrolimus skin permeation by co-encapsulation with clobetasol in lipid nanoparticles: Study of drug effects in lipid matrix by electron paramagnetic resonance. European Journal of Pharmaceutics and Biopharmaceutics, 119, 142-149.
    Barbero, A. M., Frasch, H. F. 2017. Effect of stratum corneum heterogeneity, anisotropy, asymmetry and follicular pathway on transdermal penetration. Journal of Controlled Release, 260, 234-246.
    Barkin, R. L. 2013. The pharmacology of topical analgesics. Postgraduate Medicine, 125, 7-18.
    Beg, S., Saini, S., Bandopadhyay, S., Katare, O. P., Singh, B. 2018. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of Olmesartan medoxomil employing multivariate statistical techniques. Drug Development and Industrial Pharmacy, 44, 407-420.
    Bergasa, N. V., Thomas, D. A., Vergalla, J., Turner, M. L., Jones, E. A. 1993. Plasma from patients with the pruritus of cholestasis induces opioid receptor-mediated scratching in monkeys. Life Sciences, 53, 1253-1257.
    Bhatia, G., Zhou, Y., Banga, A. K. 2013. Adapalene microemulsion for transfollicular drug delivery. Journal of Pharmaceutical Sciences, 102, 2622-2631.
    Bhattacharjee, S. 2016. DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337-351.
    Bigliardi, P. L., Stammer, H., Jost, G., Rufli, T., Buchner, S., Bigliardi-Qi, M. 2007. Treatment of pruritus with topically applied opiate receptor antagonist. Journal of the American Academy of Dermatology, 56, 979-988.
    Bnyan, R., Khan, I., Ehtezazi, T., Saleem, I., Gordon, S., O'Neill, F., Roberts, M. 2018. Surfactant Effects on Lipid-Based Vesicles Properties. Journal of Pharmaceutical Sciences, 107, 1237-1246.
    Dash, S., Murthy, P. N., Nath, L., Chowdhury, P. 2010. Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67, 217-223.
    Desmet, E., Van Gele, M., Lambert, J. 2017. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders. Expert Opinion on Drug Delivery, 14, 109-122.
    DrugFuture. Propylene Glycol Monocaprylate.
    Fang, C. L., Al-Suwayeh, S. A., Fang, J. Y. 2013. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent patents on nanotechnology, 7, 41-55.
    Fang, C. L., Aljuffali, I. A., Li, Y. C., Fang, J. Y. 2014. Delivery and targeting of nanoparticles into hair follicles. Therapeutic Delivery, 5, 991-1006.
    Fang, J. Y., Sung, K. C., Hu, O. Y., Chen, H. Y. 2001. Transdermal delivery of nalbuphine and nalbuphine pivalate from hydrogels by passive diffusion and iontophoresis. Arzneimittel-Forschung, 51, 408-413.
    Foye, William O. 2008. Foye's principles of medicinal chemistry 6th edition. 673-674. Lippincott Williams & Wilkins: Baltimore.
    Garces, A., Amaral, M. H., Sousa Lobo, J. M., Silva, A. C. 2018. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European Journal of Pharmaceutical Sciences, 112, 159-167.
    Gunther, T., Dasgupta, P., Mann, A., Miess, E., Kliewer, A., Fritzwanker, S., Steinborn, R., Schulz, S. 2018. Targeting multiple opioid receptors - improved analgesics with reduced side effects? British Journal of Pharmacology, 175, 2857-2868.
    Gwak, H. S., Kim, S. U., Chun, I. K. 2002. Effect of vehicles and enhancers on the in vitro permeation of melatonin through hairless mouse skin. Archives of Pharmacal Research, 25, 392-396.
    Hawi, A., Alcorn, H., Jr., Berg, J., Hines, C., Hait, H., Sciascia, T. 2015. Pharmacokinetics of nalbuphine hydrochloride extended release tablets in hemodialysis patients with exploratory effect on pruritus. BMC Nephrology, 16, 47.
    Hawi, A., Hunter, R., Morford, L., Sciascia, T. 2013. Nalbuphine Attenuates Itch in the Substance P-Induced Mouse Model. Acta Dermato-Venereologica, 93, 634-635.
    Hu, Oliver Yao-Pu, Chang, Chen-Chung. 2012. Analegisic (Sebacoyl dinalbuphine ester) PLGA controlled release formulation form. Google Patents.
    Inui, S. 2015. Nalfurafine hydrochloride to treat pruritus: a review. Clinical, Cosmetic and Investigational Dermatology, 8, 249-255.
    Iqbal, B., Ali, J., Baboota, S. 2018. Recent advances and development in epidermal and dermal drug deposition enhancement technology. International Journal of Dermatology, 57, 646-660.
    Jain, R., Bork, O., Tucker, I. G. 2015. Stability of penethamate, a benzylpenicillin ester prodrug, in oily vehicles. Drug Development and Industrial Pharmacy, 41, 1801-1808.
    Jain, S., Patel, N., Shah, M. K., Khatri, P., Vora, N. 2017. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. Journal of Pharmaceutical Sciences, 106, 423-445.
    Jannuzzi, R. G. 2016. Nalbuphine for Treatment of Opioid-induced Pruritus: A Systematic Review of Literature. Clinical Journal of Pain, 32, 87-93.
    Jepps, O. G., Dancik, Y., Anissimov, Y. G., Roberts, M. S. 2013. Modeling the human skin barrier--towards a better understanding of dermal absorption. Adv Drug Deliv Rev, 65, 152-168.
    Kalepu, S., Nekkanti, V. 2015. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B, 5, 442-453.
    Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., Onoue, S. 2011. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. International Journal of Pharmaceutics, 420, 1-10.
    Knorr, F., Lademann, J., Patzelt, A., Sterry, W., Blume-Peytavi, U., Vogt, A. 2009. Follicular transport route--research progress and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 71, 173-180.
    Koda-Kimble, Mary Anne. 2012. Koda-Kimble and Young's applied therapeutics: the clinical use of drugs 10th edition. 936. Lippincott Williams & Wilkins: Baltimore.
    Kupczyk, P., Reich, A., Holysz, M., Gajda, M., Wysokinska, E., Kobuszewska, A., Nevozhay, D., Nowakowska, B., Strzadala, L., Jagodzinski, P. P., Szepietowski, J. C. 2017. Opioid Receptors in Psoriatic Skin: Relationship with Itch. Acta Derm Venereol, 97, 564-570.
    Lane, M. E. 2013. Skin penetration enhancers. International Journal of Pharmaceutics, 447, 12-21.
    Lau, W. M., Ng, K. W., Sakenyte, K., Heard, C. M. 2012. Distribution of esterase activity in porcine ear skin, and the effects of freezing and heat separation. International Journal of Pharmaceutics, 433, 10-15.
    Lauterbach, A., Muller-Goymann, C. C. 2015. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. European Journal of Pharmaceutics and Biopharmaceutics, 97, 152-163.
    Lin, Y. K., Al-Suwayeh, S. A., Leu, Y. L., Shen, F. M., Fang, J. Y. 2013. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata. Pharmaceutical Research, 30, 435-446.
    Liu, F. I., Kuo, J. H., Sung, K. C., Hu, O. Y. 2003. Biodegradable polymeric microspheres for nalbuphine prodrug controlled delivery: in vitro characterization and in vivo pharmacokinetic studies. International Journal of Pharmaceutics, 257, 23-31.
    Lo, M. W., Schary, W. L., Whitney, C. C., Jr. 1987. The disposition and bioavailability of intravenous and oral nalbuphine in healthy volunteers. Journal of Clinical Pharmacology, 27, 866-873.
    Mathur, V. S., Kumar, J., Crawford, P. W., Hait, H., Sciascia, T., Investigators, T. R. Study. 2017. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of Nalbuphine ER Tablets for Uremic Pruritus. American Journal of Nephrology, 46, 450-458.
    Montagna, W. 1955. Histology and cytochemistry of human skin. IX. The distribution of non-specific esterases. J Biophys Biochem Cytol, 1, 13-16.
    Mordor Intelligence. 2018. Topical Drug Delivery Market - Segmented by Route of Administration, Product, Geography - Growth, Trends, and Forecast (2018 - 2023). Mordor Intelligence.
    Nastiti, Cmrr, Ponto, T., Abd, E., Grice, J. E., Benson, H. A. E., Roberts, M. S. 2017. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics, 9.
    Pan, Y., Tikekar, R. V., Nitin, N. 2016. Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability. International Journal of Pharmaceutics, 511, 322-330.
    Pardeike, J., Weber, S., Haber, T., Wagner, J., Zarfl, H. P., Plank, H., Zimmer, A. 2011. Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. International Journal of Pharmaceutics, 419, 329-338.
    Patzelt, A., Lademann, J. 2013. Drug delivery to hair follicles. Expert Opinion on Drug Delivery, 10, 787-797.
    Pereira, M. P., Stander, S. 2017. Chronic Pruritus: Current and Emerging Treatment Options. Drugs, 77, 999-1007.
    Pharmaceuticals and Medical Devices Agency. 2014. Report on the Deliberation Results: Nopicor Capsules 2.5 μg. Ministry of Health, Labour and Welfare.
    Potenzieri, C., Undem, B. J. 2012. Basic mechanisms of itch. Clinical and Experimental Allergy, 42, 8-19.
    Pouton, C. W. 2006. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. European Journal of Pharmaceutical Sciences, 29, 278-287.
    PubChem. 2018. Compound Summary for CID 445639: Oleic Acid.
    Qazi, F., Shoaib, M. H., Yousuf, R. I., Nasiri, M. I., Ahmed, K., Ahmad, M. 2017. Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent-Meclizine HCl. Lipids in Health and Disease, 16, 75.
    Rai, V. K., Mishra, N., Yadav, K. S., Yadav, N. P. 2018. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release, 270, 203-225.
    Raphael, A. P., Garrastazu, G., Sonvico, F., Prow, T. W. 2015. Formulation design for topical drug and nanoparticle treatment of skin disease. Therapeutic Delivery, 6, 197-216.
    Raymond C Rowe, Paul J Sheskey, Walter G Cook, Marian E Fenton. 2013. Handbook of Pharmaceutical Excipients. Pharmaceutical Press.
    Roy, S. D., Flynn, G. L. 1989. Transdermal delivery of narcotic analgesics: comparative permeabilities of narcotic analgesics through human cadaver skin. Pharmaceutical Research, 6, 825-832.
    Sala, M., Diab, R., Elaissari, A., Fessi, H. 2018. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. International Journal of Pharmaceutics, 535, 1-17.
    Singh Malik, D., Mital, N., Kaur, G. 2016. Topical drug delivery systems: a patent review. Expert Opinion on Therapeutic Patents, 26, 213-228.
    Sinko, Patrick J. 2006. Martin’s physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences 6th edition. 402. Lippincott Williams & Wilkins: Baltimore.
    Spradley, J. M., Davoodi, A., Carstens, M. I., Carstens, E. 2012. Opioid modulation of facial itch- and pain-related responses and grooming behavior in rats. Acta Derm Venereol, 92, 515-520.
    Stander, S., Schmelz, M. 2006. Chronic itch and pain--similarities and differences. European Journal of Pain (London, England), 10, 473-478.
    Strickley, Robert G, Oliyai, Reza. 2007. Formulation challenges of prodrugs. In Prodrugs, 1083-1110. Springer.
    Sung, K. C., Fang, J. Y., Hu, O. Y. 2000. Delivery of nalbuphine and its prodrugs across skin by passive diffusion and iontophoresis. Journal of Controlled Release, 67, 1-8.
    Sung, K. C., Fang, J. Y., Wang, J. J., Hu, O. Y. 2003. Transdermal delivery of nalbuphine and its prodrugs by electroporation. European Journal of Pharmaceutical Sciences, 18, 63-70.
    Sung, K. C., Han, Rough-Yee, Hu, Oliver Y. P., Hsu, Li-Ren. 1998. Controlled release of nalbuphine prodrugs from biodegradable polymeric matrices: influence of prodrug hydrophilicity and polymer composition. International Journal of Pharmaceutics, 172, 17-25.
    Suzuki, S., Sugawara, Y., Tsuji, R., Tanimura, R., Kaneko, C., Yuzawa, N., Yagi, M., Kawai, K. 2017. Discovery of highly selective kappa-opioid receptor agonists: 10alpha-Hydroxy TRK-820 derivatives. Bioorganic and Medicinal Chemistry Letters, 27, 3920-3924.
    Szepietowski, J. C., Reich, A. 2016. Pruritus in psoriasis: An update. European Journal of Pain (London, England), 20, 41-46.
    Tajiri, K., Shimizu, Y. 2017. Recent advances in the management of pruritus in chronic liver diseases. World Journal of Gastroenterology, 23, 3418-3426.
    Teeranachaideekul, V., Boonme, P., Souto, E. B., Muller, R. H., Junyaprasert, V. B. 2008. Influence of oil content on physicochemical properties and skin distribution of Nile red-loaded NLC. Journal of Controlled Release, 128, 134-141.
    Tominaga, M., Ogawa, H., Takamori, K. 2007. Possible roles of epidermal opioid systems in pruritus of atopic dermatitis. Journal of Investigative Dermatology, 127, 2228-2235.
    Trevi Therapeutics. 2018. Nalbuphine® ER.
    Uchechi, Okoro, Ogbonna, John D. N., Attama, Anthony A. 2014. Nanoparticles for Dermal and Transdermal Drug Delivery. In Application of Nanotechnology in Drug Delivery, ed. Sezer, Ali Demir, Ch. 06. InTech: Rijeka.
    Umeuchi, H., Togashi, Y., Honda, T., Nakao, K., Okano, K., Tanaka, T., Nagase, H. 2003. Involvement of central mu-opioid system in the scratching behavior in mice, and the suppression of it by the activation of kappa-opioid system. European Journal of Pharmacology, 477, 29-35.
    Vogt, A., Wischke, C., Neffe, A. T., Ma, N., Alexiev, U., Lendlein, A. 2016. Nanocarriers for drug delivery into and through the skin - Do existing technologies match clinical challenges? Journal of Controlled Release, 242, 3-15.
    Wang, J. J., Sung, K. C., Hu, O. Y., Yeh, C. H., Fang, J. Y. 2006. Submicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs. Journal of Controlled Release, 115, 140-149.
    Waterman, K. C., Adami, R. C., Alsante, K. M., Antipas, A. S., Arenson, D. R., Carrier, R., Hong, J., Landis, M. S., Lombardo, F., Shah, J. C., Shalaev, E., Smith, S. W., Wang, H. 2002. Hydrolysis in pharmaceutical formulations. Pharmaceutical Development and Technology, 7, 113-146.
    Yamamoto, A., Sugimoto, Y. 2010. Involvement of peripheral mu opioid receptors in scratching behavior in mice. European Journal of Pharmacology, 649, 336-341.
    Yen, S. Y., Sung, K. C., Wang, J. J., Yoa-Pu Hu, O. 2001. Controlled release of nalbuphine propionate from biodegradable microspheres: in vitro and in vivo studies. International Journal of Pharmaceutics, 220, 91-99.
    Zeidler, C., Yosipovitch, G., Stander, S. 2018. Prurigo Nodularis and Its Management. Dermatologic Clinics, 36, 189-197.
    Zhang, Cong, Peng, Fan, Liu, Wei, Wan, Jiangling, Wan, Chunxi, Xu, Huibi, Lam, Christopher Waikei, Yang, Xiangliang. 2014. Nanostructured lipid carriers as a novel oral delivery system for triptolide: induced changes in pharmacokinetics profile associated with reduced toxicity in male rats. International Journal of Nanomedicine, 9, 1049-1063.
    Zhang, Qian, Chantasart, Doungdaw, Kevin Li, S. 2015. Evaluation of β-blocker Gel and Effect of Dosing Volume for Topical Delivery. Journal of Pharmaceutical Sciences, 104, 1721-1731.
    衛生福利部. 2016. FDA藥字第1051403103號.
    衛生福利部食品藥物管理署. 2007. 行政院96年2月16日院臺衛字第0960004264號公告

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE