| 研究生: |
施幸慧 Shih, Hsing-Hui |
|---|---|
| 論文名稱: |
大葉蝴蝶蘭GDPS_SSU II之鑑定及功能分析 Identification and functional analysis of geranyl diphosphate synthase small subunit II (GDPS_SSU II) in Phalaenopsis bellina |
| 指導教授: |
陳虹樺
Chen, Hong-Hwa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | GDPS_SSU II 、類異戊二烯轉移酶 、萜類生合成路徑 |
| 外文關鍵詞: | GDPS_SSU II, prenyltransferase, terpenoid biosynthesis pathway |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
萜類化合物(terpenoid)為植物體中的二次代謝物,參與許多植物生理作用,包括植物生長發育、光合色素的生合成、吸引昆蟲幫助植物授粉、對草食動物或病原菌的防禦等。此類化合物的生合成由類異戊二烯轉移酶(prenyltransferase)催化,利用五個碳的單元IDP與DMADP產生不同碳鏈長度的產物,目前已有許多類異戊二烯轉移酶被發現。GDPS_SSU II為一群在親緣演化分群上不屬於任何一群已知GDPS的酵素,目前只有來自阿拉伯芥的geranylgeranyl reductase (AtGGR) 進行過功能鑑定,研究發現其單獨存在時不具有酵素活性,需與AtGGDSP11結合形成具有活性的GDPS。由於目前對於GDPS_SSU II功能的研究不多,因此目前仍不清楚他們在植物中所扮演的角色。
本研究在大葉蝴蝶蘭中找到一個與AtGGR有高度序列相似的基因,並將其命名為PbGDPS_SSU II。序列分析顯示PbGDPS_SSU II具有完整的FARM及不完整的SARM,且在蛋白質的N端帶有可轉運至葉綠體的訊號胜肽。在親緣演化上,PbGDPS_SSU II會與其它植物的GDPS_SSU II分在同一群,且與GDPS_SSU較為接近。功能鑑定顯示PbGDPS_SSU II可將IDP與DMADP或GDP結合,產生帶有十個碳及十五個碳的產物,利用大腸桿菌功能性互補實驗亦發現,PbGDPS_SSU II不具有調控PeGGDPS產物的能力。相反地, PbGDPS_SSU卻能使PeGGDPS產生的C20產物減少。進一步檢測PbGDPS_SSU II在時間與空間上的表現分布,發現其在不同花部發育時期皆有持續性表現,且在植物營養組織及生殖組織廣泛分布,顯示PbGDPS_SSU II可能與花香成分分子的合成無直接相關。鑑定PbGDPS_SSU II的功能將有助於我們了解GDPS_SSU II酵素在植物體中所扮演的角色,對蝴蝶蘭中萜類生合成路徑也將有更進一步的認識。
Terpenoids are a group of plant secondary metabolites that are involved in many biological processes, including plant growth and development, biosynthesis of photosynthetic pigments, attracting pollinators and plant defense against herbivores or pathogens. The biosynthesis of terpenoid is catalyzed by prenyltransferases using isopentenyl diphosphate (IDP, C5) and dimethylallyl diphosphate (DMADP, C5) as building blocks to form linear products with different carbon chain length. Many prenyltransferases involved in terpenoid biosynthesis have been identified and functional characterized. GDPS_SSU II is a recently identified clade of enzymes that is phylogenetically distinct from other GDPS. AtGGR, a member of GDPS_SSU II, is the only enzyme that has been functionally characterized in this clade. It is an inactive enzyme per se and only forms active GDPS with AtGGDPS11. Since the functional characterization of enzymes in this clade is scarce, the role of GDPS_SSU II in plants is still largely unknown.
In this study, an orchid gene with high similarity to AtGGR in Phalaenopsis bellina was identified and named as PbGDPS_SSU II. Sequence analysis revealed that PbGDPS_SSU II contains the first Asp-rich motif, but the second Asp-rich motif is incomplete. In addition, it possesses a chloroplast transit peptide at its N-terminus. Phylogenetically, it forms a distinct clade with other GDPS_SSU II proteins and is close to other GDPS_SSUs. Functional characterization of PbGDPS_SSU II indicated that it can accept DMADP and GDP as substrates to form GDP (C10) and FDP (C15). Moreover, the functional complementation assay in E. coli showed that PbGDPS_SSU, rather than PbGDPS_SSU II, has the ability to alter the product of PeGGDPS and reduce its C20 production. Temporal and spatial expression analyses showed that PbGDPS_SSU II was constitutively expressed during flower development and was highly expressed in both vegetative and reproductive organs. In contrast, the expression of PbGDPS_SSU is flower-specific and is highly correlated to the emission of floral scent. These results indicated that PbGDPS_SSU II may not directly involve in the biosynthesis of floral scent. Identification and functional characterization of PbGDPS_SSU II may lead to a better understanding of the function of plant GDPS_SSU II and their role in terpenoid biosynthesis in orchids.
Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
Bohlmann, J., Stauber, E.J., Krock, B., Oldham, N.J., Gershenzon, J., and Baldwin, I.T. (2002). Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 60, 109-116.
Bos, R., Koulman, A., Woerdenbag, H.J., Quax, W.J., and Pras, N. (2002). Volatile components from Anthriscus sylvestris (L.) Hoffm. J Chromatogr A 966, 233-238.
Bouvier, F., Suire, C., d'Harlingue, A., Backhaus, R.A., and Camara, B. (2000). Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant Journal 24, 241-252.
Burke, C., and Croteau, R. (2002a). Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277, 3141-3149.
Burke, C., and Croteau, R. (2002b). Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405, 130-136.
Burke, C.C., Wildung, M.R., and Croteau, R. (1999). Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci 96, 13062-13067.
Chang, T.H., Hsieh, F.L., Ko, T.P., Teng, K.H., Liang, P.H., and Wang, A.H.J. (2010). Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 22, 454-467.
Chen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., and Tholl, D. (2004). Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135, 1956-1966.
Delano, W.L. (2002). The PyMOL Molecular Graphic System. (http://www.pymol.org/:DeLano Scientific).
Dicke, M., and van Loon, J.J.A. (2000). Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97, 237-249.
Dudareva, N., and Pichersky, E. (2000). Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122, 627-633.
Dudareva, N., Pichersky, E., and Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiol 135, 1893-1902.
Dudareva, N., Negre, F., Nagegowda, D.A., and Orlova, I. (2006). Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25, 417-440.
Fu, C.H., Chen, Y.W., Hsiao, Y.Y., Pan, Z.J., Liu, Z.J., Huang, Y.M., Tsai, W.C, and Chen, H.H. (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52, 238–243.
Fujii, H., Sagami, H., Koyama, T., Ogura, K., Seto, S., Baba, T., and Allen, C.M. (1980). Variable product specificity of solanesyl pyrophosphate synthetase. Biochem Biophys Res Commun 96, 1648-1653.
Gietz, D., St Jean, A., Woods, R.A., and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.
Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723.
Hsiao, Y.Y. (2008). Studies on the biosynthesis pathway and its related genes of Phalaenopsis bellina floral scent. Doctoral Dissertation, National Cheng Kung University.
Hsiao, Y.Y., Tsai, W.C., Kuoh, C.S., Huang, T.H., Wang, H.C., Wu, T.S., Leu, Y.L., Chen, W.H., and Chen, H.H. (2006). Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol 6, 14.
Hsiao, Y.Y., Jeng, M.F., Tsai, W.C., Chuang, Y.C., Li, C.Y., Wu, T.S., Kuoh, C.S., Chen, W.H., and Chen, H.H. (2008). A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J 55, 719-733.
Hsieh, F.L., Chang, T.H., Ko, T.P., and Wang, A.H. (2010). Enhanced specificity of mint geranyl pyrophosphate synthase by modifying the R-loop interactions. J Mol Biol 404, 859-873.
Hsieh, F.L., Chang, T.H., Ko, T.P., and Wang, A.H. (2011). Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155, 1079-1090.
Kainou, T., Kawamura, K., Tanaka, K., Matsuda, H., and Kawamukai, M. (1999). Identification of the GGPS1 genes encoding geranylgeranyl diphosphate synthases from mouse and human. Biochim Biophys Acta 1437, 333-340.
Kessler, A., and Baldwin, I.T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141-2144.
Kovacevic, N., Pavlovic, M., Menkovic, N., Tzakou, O., and Couladis, M. (2002). Composition of the essential oil from roots and rhizomes of Valeriana pancicii Halacsy & Bald. Flavour Frag J 17, 355-357.
Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993). Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: molecular cloning, sequence determination, overproduction, and purification. J Biochem 113, 355-363.
Kroymann, J. (2011). Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14, 246-251.
Laule, O., Furholz, A., Chang, H.S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W., and Lange, M. (2003). Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci 100, 6866-6871.
Liang, P.H. (2009). Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48, 6562-6570.
Liang, P.H., Ko, T.P., and Wang, A.H. (2002). Structure, mechanism and function of prenyltransferases. Eur J Biochem 269, 3339-3354.
Matsuoka, S., Sagami, H., Kurisaki, A., and Ogura, K. (1991). Variable product specificity of microsomal dehydrodolichyl diphosphate synthase from rat-liver. J Biol Chem 266, 3464-3468.
Newman, J.D., and Chappell, J. (1999). Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34, 95-106.
Ogura, K., and Koyama, T. (1998). Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98, 1263-1276.
Ohnuma, S., Koyama, T., and Ogura, K. (1993). Alteration of the product specificities of prenyltransferases by metal-ions. Biochem Bioph Res Co 192, 407-412.
Ohnuma, S., Hirooka, K., Ohto, C., and Nishino, T. (1997). Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem 272, 5192-5198.
Okada, K., Saito, T., Nakagawa, T., Kawamukai, M., and Kamiya, Y. (2000). Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122, 1045-1056.
Orlova, I., Nagegowda, D.A., Kish, C.M., Gutensohn, M., Maeda, H., Varbanova, M., Fridman, E., Yamaguchi, S., Hanada, A., Kamiya, Y., Krichevsky, A., Citovsky, V., Pichersky, E., and Dudareva, N. (2009). The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21, 4002-4017.
Pare, P.W., and Tumlinson, J.H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiol 121, 325-332.
Pichersky, E., and Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5, 237-243.
Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993). Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295 ( Pt 2), 517-524.
Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31, 3381-3385.
Song, L., and Poulter, C.D. (1994). Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci 91, 3044-3048.
Tarshis, L.C., Proteau, P.J., Kellogg, B.A., Sacchettini, J.C., and Poulter, C.D. (1996). Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci 93, 15018-15023.
Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9, 297-304.
Tholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E., and Dudareva, N. (2004). Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16, 977-992.
Tsai, W.C., Pan, Z.J., Hsiao, Y.Y., Jeng, M.F., Wu, T.F., Chen, W.H., and Chen, H.H. (2008). Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol 49, 814-824.
Vandermoten, S., Haubruge, E., and Cusson, M. (2009). New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66, 3685-3695.
Wang, G., and Dixon, R.A. (2009). Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci 106, 9914-9919.
Wang, K., and Ohnuma, S. (1999). Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 24, 445-451.
Waterman, R.J., and Bidartondo, M.I. (2008). Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59, 1085-1096.
Yao, S.H. (2010). Investigation of geranylgeranyl diphosphate (GGDP) biosynthesis pathway in Phalaenopsis orchids. Master Thesis, National Cheng Kung University.
校內:2017-09-06公開