| 研究生: |
連志浩 Lien, Chih-Hao |
|---|---|
| 論文名稱: |
目標與分心刺激之fMRI重複抑制 fMRI Repetition Suppression for Targets and Distractors |
| 指導教授: |
林君昱
Lin, Chun-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 重複抑制 、注意力 、功能性磁振造影(fMRI) |
| 外文關鍵詞: | Repetition Suppression (RS), attention, fMRI |
| 相關次數: | 點閱:143 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
重複抑制(Repetition Suppression, RS)是指當重複看到相同的刺激,或是重複進行相同反應時,相關腦區之活化程度會顯著下降的現象。目前對於重複抑制是否是個自動化的現象或為一種需要投入注意力參與的歷程,仍是有所爭議。例如Jiang et al.(2000)呈現一連串臉孔,要求參與者對與樣本刺激相同的目標刺激進行反應,發現參與者對於重複出現的目標刺激(需要注意)與分心刺激(不需注意)皆呈現重複抑制,支持重複抑制是自動化現象的觀點。但Chun與Yi(2005)同時呈現疊合的(composite)風景與臉孔兩種刺激,要求參與者根據線索注意風景或臉孔中的一種是否改變,卻發現只有在初次出現與再次出現時皆是需注意的目標種類時,才會在對應腦區出現重複抑制,支持重複抑制需要注意力投入的看法。本研究欲檢驗對於目標與分心刺激所需要的不同注意程度,是否會影響重複抑制的產生與否。我們以Jiang et al.(2000)的實驗派典為基礎,並搭配Chun與Yi(2005)採用風景、臉孔兩種刺激的設計來進行修改,藉由目標刺激與分心刺激的種類變化進行注意力的操弄,以釐清注意力的投入與重複抑制之間的關聯。結果顯示不論分心刺激的種類與目標刺激相同與否,參與者對於重複出現的分心刺激皆會呈現重複抑制,支持重複抑制是一種自動化歷程的觀點。
Repetition Suppression (RS) refers to the phenomenon that when the same stimulus is repeated, the BOLD responses to it decrease in certain brain areas. It reminas unclear what exactly its underlying neural mechanism is. One theory suggests that RS is a perceptual-level automatic process; therefore it should remain the same regardless of attentional or task demand manipulations (e.g., Jiang et al., 2000). However, there are also several studies reported a different pattern suggesting that RS is not an automatic process and can be modulated by attention (Yi & Chun, 2005). One reason that why previous studies have yield different results might be the differences in the level of attention to the stimuli manipulated in those studies.
We reckon that when targets and distractors belong to very different categories, the distractors can be ignored immediately after the stimulus category is identified, thus receives minimum attention. And this may not be enough to produce RS (e.g., Yi & Chun, 2005). We modified the paradigm Jiang et al. (2000) used, adding a manipulation of using two categories of stimuli (face and scene), to investigation our hypothesis. The results indicate that RS can be found in stimulus-category related areas (ie. parahippocampal place area and fusiform face area) in all four conditions regardless of whether targets and distractors were from same category or not. In sum, our results support better the view that RS is an automatic process, at least in the paradigm we used.
Badgaiyan, R. D., Schacter, D. L., & Alpert, N. M. (2001). Priming within and across Modalities: Exploring the Nature of rCBF Increases and Decreases. NeuroImage, 13(2), 272–282. http://doi.org/10.1006/nimg.2000.0693
Ballesteros, S., & Mayas, J. (2015). Selective attention affects conceptual object priming and recognition: a study with young and older adults. Frontiers in Psychology, 5. http://doi.org/10.3389/fpsyg.2014.01567
Bentley, P., Vuilleumier, P., Thiel, C. M., Driver, J., & Dolan, R. J. (2003). Effects of Attention and Emotion on Repetition Priming and Their Modulation by Cholinergic Enhancement. Journal of Neurophysiology, 90(2), 1171–1181. http://doi.org/10.1152/jn.00776.2002
Bruce Goldstein. (2010). Cognitive Psychology, Third Edition. Linda Schreiber-Ganster.
Buckner, R. L., Petersen, S. E., Ojemann, J. G., Miezin, F. M., Squire, L. R., & Raichle, M. E. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. The Journal of Neuroscience, 15(1), 12–29.
Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences, 93(24), 13494–13499.
Eger, E., Henson, R. N. A., Driver, J., & Dolan, R. J. (2004). BOLD Repetition Decreases in Object-Responsive Ventral Visual Areas Depend on Spatial Attention. Journal of Neurophysiology, 92(2), 1241–1247. http://doi.org/10.1152/jn.00206.2004
Gabitov, E., Manor, D., & Karni, A. (2014). Done That: Short-term Repetition Related Modulations of Motor Cortex Activity as a Stable Signature for Overnight Motor Memory Consolidation. Journal of Cognitive Neuroscience, 26(12), 2716–2734. http://doi.org/10.1162/jocn_a_00675
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex. Neuron, 24(1), 187–203. http://doi.org/10.1016/S0896-6273(00)80832-6
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. http://doi.org/10.1016/j.tics.2005.11.006
Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging Evidence for Dissociable Forms of Repetition Priming. Science, 287(5456), 1269–1272. http://doi.org/10.1126/science.287.5456.1269
Henson, R. N. A., Shallice, T., Gorno-Tempini, M. L., & Dolan, R. J. (2002). Face Repetition Effects in Implicit and Explicit Memory Tests as Measured by fMRI. Cerebral Cortex, 12(2), 178–186. http://doi.org/10.1093/cercor/12.2.178
Henson, R. N. . (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70(1), 53–81. http://doi.org/10.1016/S0301-0082(03)00086-8
Henson, R. N., & Mouchlianitis, E. (2007). Effect of spatial attention on stimulus-specific haemodynamic repetition effects. NeuroImage, 35(3), 1317–1329. http://doi.org/10.1016/j.neuroimage.2007.01.019
Hsu, Y.-F., Hämäläinen, J. A., & Waszak, F. (2014). Repetition suppression comprises both attention-independent and attention-dependent processes. NeuroImage, 98, 168–175. http://doi.org/10.1016/j.neuroimage.2014.04.084
Ishai, A., Pessoa, L., Bikle, P. C., & Ungerleider, L. G. (2004). Repetition suppression of faces is modulated by emotion. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9827–9832. http://doi.org/10.1073/pnas.0403559101
Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G., & Parasuraman, R. (2000). Complementary Neural Mechanisms for Tracking Items in Human Working Memory. Science, 287(5453), 643–646. http://doi.org/10.1126/science.287.5453.643
Julian, J. B., Fedorenko, E., Webster, J., & Kanwisher, N. (2012). An algorithmic method for functionally defining regions of interest in the ventral visual pathway. NeuroImage, 60(4), 2357–2364. http://doi.org/10.1016/j.neuroimage.2012.02.055
Koutstaal, W., Wagner, A. D., Rotte, M., Maril, A., Buckner, R. L., & Schacter, D. L. (2001). Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia, 39(2), 184–199. http://doi.org/10.1016/S0028-3932(00)00087-7
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158. http://doi.org/10.1038/377155a0
Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences, 95(3), 861–868.
Kouider, S., Eger, E., Dolan, R., & Henson, R. N. (2009). Activity in Face-Responsive Brain Regions is Modulated by Invisible, Attended Faces: Evidence from Masked Priming. Cerebral Cortex, 19(1), 13–23. http://doi.org/10.1093/cercor/bhn048
Lueschow, A., Miller, E. K., & Desimone, R. (1994). Inferior Temporal Mechanisms for Invariant Object Recognition. Cerebral Cortex, 4(5), 523–531. http://doi.org/10.1093/cercor/4.5.523
Miller, E. K., & Desimone, R. (1994). Parallel Neuronal Mechanisms for Short-Term Memory. Science, 263(5146), 520–522.
Moore, K. S., Yi, D.-J., & Chun, M. (2013). The Effect of Attention on Repetition Suppression and Multivoxel Pattern Similarity. Journal of Cognitive Neuroscience, 25(8), 1305–1314. http://doi.org/10.1162/jocn_a_00387
Murray, S. O., & Wojciulik, E. (2004). Attention increases neural selectivity in the human lateral occipital complex. Nature Neuroscience, 7(1), 70–74. http://doi.org/10.1038/nn1161
Purves, Dale, Brannon, Elizabeth M., Cabeza, Roberto, Huettel, Scott A., & LaBar, Kevin S. (2007). Principles of Cognitive Neuroscience. Baker & Taylor Books.
Schacter, D. L., & Buckner, R. L. (1998). On the Relations among Priming, Conscious Recollection, and Intentional Retrieval: Evidence from Neuroimaging Research. Neurobiology of Learning and Memory, 70(1–2), 284–303. http://doi.org/10.1006/nlme.1998.3854
Schacter, D. L., & Buckner, R. L. (1998). Priming and the Brain. Neuron, 20(2), 185–195. http://doi.org/10.1016/S0896-6273(00)80448-1
Schacter, D. L., Wig, G. S., & Stevens, W. D. (2007). Reductions in cortical activity during priming. Current Opinion in Neurobiology, 17(2), 171–176. http://doi.org/10.1016/j.conb.2007.02.001
Sobotka, S., & Ringo, J. L. (1996). Mnemonic Responses of Single Units Recorded from Monkey Inferotemporal Cortex, Accessed via Transcommissural Versus Direct Pathways: A Dissociation between Unit Activity and Behavior. The Journal of Neuroscience, 16(13), 4222–4230.
Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1837–1841.
Turk-Browne, N. B., Yi, D.-J., & Chun, M. M. (2006). Linking Implicit and Explicit Memory: Common Encoding Factors and Shared Representations. Neuron, 49(6), 917–927. http://doi.org/10.1016/j.neuron.2006.01.030
Thoma, V., & Henson, R. N. (2011). Object representations in ventral and dorsal visual streams: fMRI repetition effects depend on attention and part–whole configuration. NeuroImage, 57(2), 513–525. http://doi.org/10.1016/j.neuroimage.2011.04.035
van Turennout, M., Ellmore, T., & Martin, A. (2000). Long-lasting cortical plasticity in the object naming system. Nature Neuroscience, 3(12), 1329–1334. http://doi.org/10.1038/81873
Vuilleumier, P., Schwartz, S., Duhoux, S., Dolan, R. J., & Driver, J. (2005). Selective Attention Modulates Neural Substrates of Repetition Priming and “Implicit” Visual Memory: Suppressions and Enhancements Revealed by fMRI. Journal of Cognitive Neuroscience, 17(8), 1245–1260. http://doi.org/10.1162/0898929055002409
Wei-chun Wang, Ranganath, C., & Yonelinas, A. P. (n.d.). Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition. Neuropsychologia. http://doi.org/10.1016/j.neuropsychologia.2013.10.006
Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. Current Opinion in Neurobiology, 8(2), 227–233. http://doi.org/10.1016/S0959-4388(98)80144-X
Wojciulik, E., Kanwisher, N., & Driver, J. (1998). Covert Visual Attention Modulates Face-Specific Activity in the Human Fusiform Gyrus: fMRI Study. Journal of Neurophysiology, 79(3), 1574–1578.
Yi, D.-J., & Chun, M. M. (2005). Attentional Modulation of Learning-Related Repetition Attenuation Effects in Human Parahippocampal Cortex. The Journal of Neuroscience, 25(14), 3593–3600. http://doi.org/10.1523/JNEUROSCI.4677-04.2005
Yi, D.-J., Kelley, T. A., Marois, R., & Chun, M. M. (2006). Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Research, 1080(1), 53–62. http://doi.org/10.1016/j.brainres.2006.01.090