簡易檢索 / 詳目顯示

研究生: 陳祉伃
Chen, Chih-Yu
論文名稱: SIMA製程AZ61鎂合金壓縮與拉伸及沖剪特性研究
A Study on Compression Properties, Tensile Properties and Shear-Punch Characteristics of Strain-Induced Melt Activation (SIMA) AZ61 Magnesium Alloy
指導教授: 呂傳盛
Lui, Truan-Sheng
洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: AZ61鎂合金應變誘導熔漿活化法(SIMA)壓縮性質拉伸性質沖剪性質
外文關鍵詞: AZ61, SIMA, compression properties, tensile properties, shear-punch characteristics
相關次數: 點閱:151下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鎂合金具有質輕、具高比強度及可回收性等優點,因此近年來普遍應用於交通工具及3C產品上。鎂合金結構為HCP,於室溫下滑移系統不足而不易加工,導致成形性不佳。目前鎂合金的元件成形是以壓鑄法(Die casting)及半固態製程為主流。壓鑄成型具有高產能以及尺寸控制精密等優點,但工件鑄造缺陷無法完全避免,而半固態製程除了減少壓鑄法成形之孔洞生成及高固化收縮率的問題之外,亦具有近淨形之優點。半固態製程中的SIMA 製程之最大優點,在於技術門檻與投資金額相對低廉。另外,沖剪加工製程為工業界應用廣泛之板材加工方式,具有高效率、高精度、可於室溫下加工且幾乎不用後續切削動作等優點。
      本研究透過熱擠型時導入應變,改良傳統式SIMA 製程之缺點,並探討SIMA材微觀組織變化對其拉伸性質與沖剪特性之影響。此外,針對SIMA 材進行半固態壓縮實驗以探討其壓縮特性,並對經壓縮後之材料進行拉伸及沖剪特性分析,最後將壓縮前及壓縮後的材料性質比較,以提供半固態製程應用依據。本實驗AZ61鎂合金擠型材,由細微晶粒所組成,於熱擠型SIMA 製程後可獲得球狀晶組織。  高溫壓縮性質顯示,當壓縮溫度高於固相線溫度,材料變形阻抗急遽下降。具有球狀晶胞特徵組織之SIMA 材,半固態溫度壓縮時,變形阻抗低於擠型材。拉伸性質發現,SIMA材強度較擠型材低,且破斷面表現為無延性之脆性破壞特徵。SIMA材經高溫壓縮之材料強度及延性皆有明顯提升,且破斷面為延性破壞特徵。沖剪試驗結果確認,SIMA材具有較擠型材更為平整之沖剪面,且經高溫壓縮後之SIMA材沖剪面更佳平整,具備優良之沖剪加工特性。

    Strain-induced melt activation (SIMA) is a process with development potential due to its simplicity and low cost. The semisolid billet of AZ61 Mg alloy was fabricated by the hot extruded SIMA process. The effects of heating condition on the microstructure feature, the semi-solid forming mechanism, compressive properties, tensile properties and shear-punch properties were discussed. The grains became more globular with appropriately increasing the reheating temperatures and holding time. The deformation resistance of Mg alloys after SIMA process was lower than as-extruded at 500°C, 525°C, and 535°C. The strength of Mg alloys after SIMA process was lower than as-extruded, and its fracture surface showed brittle failure. SIMA AZ61 also showed better shear-punch characteristics than as-extruded Mg alloys. After high temperature compressive test, as-extruded Mg alloys and SIMA AZ61 showed better tensile properties and shear-punch characteristics.

    總目錄 中文摘要…………………………………………………………………I Extended Abstract……………………………………………………III 致謝……………………………………………………………………XV 總目錄…………………………………………………………………XVII 表目錄…………………………………………………………………XX 圖目錄…………………………………………………………………XXI 第一章 前言.............................................1 第二章 文獻回顧.........................................3 2.1 鎂合金分類記號之規範及意義.......................3 2.2 AZ系列鎂合金之合金元素添加效應...................3 2.3 半固態製程技術...................................4 2.4 應變誘導熔漿活化法...............................6 2.5 半固態晶胞粗大化機制.............................9 2.6 半固態壓縮成形之變形機制.........................9 2.7 鎂合金室溫變形機制..............................10 2.7.1 滑移系統........................................10 2.7.2 形變雙晶........................................11 2.8 沖剪加工........................................12 2.9 研究目的........................................13 第三章 實驗步驟與方法..................................20 3.1 熱擠型材製備....................................20 3.2 熱處理..........................................21 3.2.1 預備實驗........................................21 3.2.2 熱處理條件......................................23 3.3 微觀組織觀察....................................23 3.4 半固態高溫壓縮實驗..............................24 3.5 拉伸試驗........................................25 3.6 沖剪表面特性觀察................................26 第四章 結果與討論......................................36 4.1 SIMA處理對AZ61鎂合金微觀組織之影響..............36 4.1.1 F-P材及SP-560材微觀組織.........................36 4.1.2 F-B心材/邊材、O-B心材/邊材、SB-560心材/邊材之微觀組織………………………………………………………………………37 4.2 F-P材/SP-560-20材/SP-560-30材拉伸與破壞特性比較(未經高溫壓縮)...............................................40 4.2.1 拉伸機械性質....................................40 4.2.2 拉伸破斷面及次表面觀察..........................41 4.3 F-B材/O-B材/SB-560-20材半固態高溫壓縮性質.......42 4.3.1 高溫壓縮流變曲線分析............................42 4.3.2 高溫壓縮試片ED面及側緣形貌特徵..................43 4.3.3 高溫壓縮試片縱剖面微觀組織特性..................44 4.4 經525°C高溫壓縮後之F-B材/O-B材/SB-560-20材拉伸性質.……………………………………………………………………45 4.4.1 拉伸機械性質....................................45 4.4.2 拉伸破斷面及拉伸破斷次表面觀察..................46 4.5 沖剪表面特性....................................47 4.5.1 F-P/SP-560-20/SP-560-30之沖剪性質比較(未經高溫壓縮)………………………………………………………………………47 4.5.2 經525°C高溫壓縮後之F-B/O-B/SB-560-20之沖剪性質比較.49 4.5.3 未經高溫壓縮及經525°C高溫壓縮之SIMA材沖剪特性比較..49 第五章 結論..............................................83 參考文獻…………………………………………………………………85 表目錄 表2-1 ASTM標準鎂合金分類規範記號……………………………...14 表3-1本研究AZ61鎂合金之化學組成 (Wt.%)……………………...27 表3-2 AZ61鎂合金不同熱處理條件之試片代號……………………..27 圖目錄 圖2-1 Mg-Al二元相圖…………………………………………………15 圖2-2金屬熔湯之凝固樹枝狀晶受剪應力,使液相滲入導致枝臂斷裂 示意圖:(a)未受剪應力之樹枝狀晶;(b)受剪應力後之樹枝狀晶; (c)形成高角度晶界;(d)液相滲透潤濕高角度晶界,造成枝臂斷 裂………………………………………………………………..16 圖2-3商用鎂合金半固態製程技術(觸變成形)……………………17 圖2-4 SIMA製程各階段示意圖……………………………………….17 圖2-5 當ϒGB ≥ 2ϒSL,晶界被液相潤濕示意圖………………………18 圖2-6半固態壓縮成形示意圖…………………………………………18 圖2-7六方晶系之滑移系統……………………………………………19 圖3-1 實驗流程圖:(a)板材:SIMA材微觀組織對拉伸及沖剪特性影 響探討(b)棒材:SIMA材經高溫壓縮測試後之拉伸及沖剪性質 影響探討………………………………………………………..28 圖3-2 AZ61 鎂合金F-B材: a處為邊材,b處為心材……………….29 圖3-3 F-P材3D之OM金相………………………………………….29 圖3-4 F-P材ND 面經不同溫度持溫30 分鐘後金相: (a)520°C,(b)540°C,(c) 560°C,(d) 580°C…………………30 圖3-5 F-B心材ND 面經不同溫度持溫30 分鐘後之金相: (a)520°C,(b) 540°C,(c) 560°C,(d) 580°C…………………31 圖3-6 F-B材金相:(a) 邊材,(b) 心材………………………………32 圖3-7晶粒徑計算之米字截取法示意圖 (unit:μm)………………...33 圖3-8壓縮試片規格…………………………………………………..33 圖3-9 F-P及SP材拉伸試片尺寸…………………………………….34 圖3-10 經高溫壓縮試驗後之F-B材及SB材微小拉伸試片尺寸…34 圖3-11沖剪試片尺寸示意圖: (a)未經高溫壓縮之板材, (b)經高溫壓縮後之棒材……………………………………...35 圖4-1 F-P材ND面高倍率金相………………………………………50 圖4-2 F-P材ND面SEM/EDS成分分析: (a)γ-Mg17Al12, (b) Al-Mn………………………………………………………..51 圖4-3 SP-560材不同持溫時間ND面金相: (a)10min,(b)20min, (c)30min,(d)40min…………………………………………….52 圖4-4 SP-560-30材高倍率之共晶組織 (虛線圈選處)……………….52 圖4-5 SP-560-30材ND面之SEM/EDS成分分析……………………53 圖4-6 SP-560材經不同持溫時間: (a)晶粒球化率,(b)平均液相率…54 圖4-7 SP-560材經不同持溫時間之平均晶粒徑大小………………...55 圖4-8 F-B材金相:(a) ND面-心材,(b) ND面-邊材, (c) ED面-心材,(d) ED面-邊材…………………….……….…55 圖4-9 O-B材金相: (a) ND面-心材,(b) ND面-邊材, (c) ED面-心材,(d) ED面-邊材…………………………..…56 圖4-10 SB-560-10材金相: (a) 心材,(b) 邊材……………………….57 圖4-11 SB-560-20材金相: (a) 心材,(b) 邊材……………………….57 圖4-12 SB-560-30材金相: (a) 心材,(b) 邊材………………………58 圖4-13 SB-560-40材金相: (a) 心材,(b) 邊材……………………….58 圖4-14 F-B及SB-560-30硬度值(HRF)比較………………………….59 圖4-15 SB-560-30基地相與共晶組織之微硬度值(HV)……………...59 圖4-16 SB-560材經不同持溫時間: (a)晶粒球化率,(b)平均液相率…60 圖4-17 SB-560材經不同持溫時間之平均晶粒徑大小……………….61 圖4-18 F-P材、SP-560-20材、SP-560-30材拉伸強度………………61 圖4-19 F-P材、SP-560-20材、SP-560-30材應力應變曲線…………62 圖4-20 F-P材、SP-560-20材、SP-560-30材拉伸破斷面: (a)F-P, (b)SP-560-20,(c)SP-560-30……………………………………62 圖4-21 F-P材、SP-560-20材、SP-560-30材拉伸破斷次表面: (a)F-P,(b)SP-560-20,(c)SP-560-30…………………………..63 圖4-22 F-P材及SP-560-20材、SP-560-30材拉伸破斷特徵示意圖 (白色虛線為裂紋,圖上黑色區域及黑色圓點為第二相): (a)F-P,(b)SP-560-20及SP-560-30…………………………..64 圖4-23 F-B材、O-B材及SB-560-20材壓縮流變曲線: (a)500°C,(b)525°C,(c)535°C…………………………………………………..65 圖4-24 F-B材、O-B材及SB-560-20材於500°C下之壓縮試片ED 面及側緣形貌: (a) F-B,(b) O-B,(c) SB-560-20…………….66 圖4-25 F-B材、O-B材及SB-560-20材於525°C下之壓縮試片ED : 面及側緣形貌: (a) F-B,(b) O-B,(c) SB-560-20……………66 圖4-26 F-B材、O-B材及SB-560-20材於535°C下之壓縮試片ED : 面及側緣形貌: (a) F-B,(b) O-B,(c) SB-560-20…………….66 圖4-27 F-B材、O-B材、SB-560-20材於500°C下之壓縮試片縱剖 : 面金相: (a) F-B材,(b) O-B材,(c) SB-560-20材…………..67 圖4-28 F-B材、O-B材、SB-560-20材於525°C下之壓縮試片縱剖 : 面金相: (a) F-B材,(b) O-B材,(c) SB-560-20材………….68 圖4-29 F-B材、O-B材、SB-560-20材於535°C下之壓縮試片縱剖 : 面金相: (a) F-B材,(b) O-B材,(c) SB-560-20材………….69 圖4-30經525°C高溫壓縮後之F-B材、O-B材、SB-560-20材拉伸 : 強度…………………………………………………………….70 圖4-31經525°C高溫壓縮後之F-B材、O-B材、SB-560-20材拉伸 : 延性…………………………………………………………….70 圖4-32經525°C高溫壓縮後SB-560-20材SEM/EDS分析………..71 圖4-33 XRD分析: (a)未經高溫壓縮材,(b)經高溫壓縮材,(c)標準鎂:粉………………………………………………………………..72 圖4-34經525°C高溫壓縮後之F-B材、O-B材、SB-560-20材 : 拉伸破斷面: (a) F-B,(b) O-B,(c) SB-560-20………………73 圖4-35經525°C高溫壓縮後之F-B材、O-B材、SB-560-20材 : 拉伸破斷次表面: (a) F-B,(b) O-B,(c) SB-560-20………….74 圖4-36 F-P、SP-560-20及SP-560-30材於常溫下之沖剪表面: : (a) F-P,(b) SP-560-20,(c) SP-560-30……………………….75 圖4-37 F-P、SP-560-20及SP-560-30材於常溫下沖剪表面: : (a) F-P,(b) SP-560-20,(c) SP-560-30……………………….76 圖4-38 F-P、SP-560-20及SP-560-30材於常溫下沖剪次表面: : (a) F-P,(b) SP-560-20,(c) SP-560-30……………………….77 圖4-39 F-P材及SP-560-20材、SP-560-30材沖剪破壞特徵示意圖 : (白色虛線為裂紋,圖上黑色區域及黑色圓點為第二相): :(a)F-P,(b)SP-560-20及SP-560-30…………………………..78 圖4-40經525°C高溫壓縮後之F-B、O-B、SB-560-20於常溫下之 : 沖剪表面: (a) F-B,(b) O-B,(c) SB-560-20…………………79 圖4-41 經525°C高溫壓縮後之F-B、O-B、SB-560-20於常溫下 沖剪表面: (a) F-B,(b) O-B,(c) SB-560-20………………….80 圖4-42經525°C高溫壓縮後之F-B、O-B、SB-560-20於常溫下 : 沖剪表面: (a) F-B,(b) O-B,(c) SB-560-20…………………81 圖4-43 SIMA材經高溫壓縮前後沖剪次表面比較示意圖(白色虛線為 :裂紋,圖上黑色區域及黑色圓點為第二相)…………………82

    1. J. F. Jiang, X. Lin, Y. Wang, J. J. Qu, S. J. Luo, "Microstructural evolution of AZ61 magnesium alloy predeformed by ECAE during semisolid isothermal treatment", Transactions of Nonferrous Metals Society of China, vol.22, pp.555-563, 2012.
    2. M. M. Avedesian, H. Baker, "Magnesium and Magnesium Alloys", ASM, pp.16-18, 1999.
    3. 蔡幸甫,「鎂合金產業技術及市場發展趨勢專題調查」,工研院IEK,2-5 頁,民國90 年10 月。.
    4. M. M. Avedesian, H. Baker, "Magnesium and Magnesium Alloys", ASM, pp.37-43, 1999.
    5. Lunder, O., T.K. Aune, and K. Nisancioglu, Effect of Mn Additions on the Corrosion Behavior of Mould-Cast Magnesium ASTM AZ91. Corrosion, 43(5): pp. 291-295, 1987.
    6. C.H. Caceres, C.J. Davidson, J.R. Griffiths, C.L. Newton, Material Science and Engineering, A325, pp.344-355, 2002.
    7. J. W. Edington, K. N. Melton, C. P. Cutler, "Superplasticity", Progress in Materials Science, vol.21, pp.61-158, 1976.
    8. H. Y. Wang, Y. H. Su, C. Y. A. Tsao, "Structural evolution of conventional cast dendritic and spray-cast non-dendritic structures during isothermal holding in the semi-solid state", Scripta Materialia, vol.37, pp.2003-2007, 1997.
    9. T. Haga, P. Kapranos, "Thixoforming of laminate made from semisolid cast strips", Journal of Materials Processing Technology, vol.157, pp.508-512, 2004.
    10. A. Paes, E. J. Zoqui, "Semi-solid behavior of new Al-Si-Mg alloys for thixoforming", Materials Science and Engineering A, vol.406, pp.63-73, 2005.
    11. 邱垂泓, 金屬半固態製程技術簡介. 工業材料164期, 89年8月: pp.158~160.
    12. Z. Fan, "Semisolid metal processing", International Materials Reviews,vol.47, pp.49-85, 2002.
    13. M. C. Flemings, R. G. Riek, K. P. Young, "Rheocasting", Materials Science and Engineering, vol.25, pp.103-117, 1976.
    14. D. B. Spencer, R.M., and M. C. Flemings, Rheological behavior of Sn-15 Pct Pb in the crystallization range Metallurgical Transaction, 3.1925(1972).
    15. U. Tadashi, K. Kazuo, "United States Patent 2251343", Dec.6, 2005.
    16. H. V. Atkinson, "Modelling the semisolid processing of metallic alloys", Progress in Materials Science, vol.50, pp.341-412, 2005.
    17. K. P. Young, C. P. Kyonka, J. A. Courtois, United States Patent 4415374. Nov.15, 1983.
    18. E. E. Glickman, M. Nathan, "On the kinetic mechanism of grain boundary wetting in metals", Journal of Applied Physics, vol.85, pp.3185-3191, 1999.
    19. M. X. Xia, H. X. Zheng, S. Yuan, J. G. Li, "Recrystallization of preformed AZ91D magnesium alloys in the semisolid state", Materials & Design, vol.26, pp.343-349, 2005.
    20. H. Y. Xu, Z. S. Ji, M. L. Hu, Z. Y. Wang, "Microstructure of AZ91D magnesium alloy semi-solid billets prepared by SIMA method from chips", Transactions of Nonferrous Metals Society of China, vol.20, pp.S749-S753, 2010.
    21. S. Kleiner, O. Beffort, P. J. Uggowitzer, "Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state", Scripta Materialia, vol.51, pp.405-410, 2004.
    22. Hiroyuki Watanabe , T.M., Koichi Ishikawa , Kenji Higashi, Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia 46, pp.851–856, 2002.
    23. E. Tzimas, A. Zavaliangos, "Evolution of near-equiaxed microstructure in the semisolid state", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol.289, pp.228-240, 2000.
    24. L. Zhang, Y. B. Liu, Z. Y. Cao, Y. F. Zhang, Q. Q. Zhang, "Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA", Journal of Materials Processing Technology, vol.209, pp.792-797, 2009.
    25. J. G. Wang, P. Lu, H. Y. Wang, J. F. Liu, Q. C. Jiang, "Semisolid microstructure evolution of the predeformed AZ91D alloy during heat treatment", Journal of Alloys and Compounds, vol.395, pp.108-112, 2005.
    26. 木內學,「半熔融‧半凝固加工21 世紀展望」,塑性と加工,vol.35,369 頁,1994。.
    27. H. Yan, B. F. Zhou, "Thixotropic deformation behavior of semi-solid AZ61 magnesium alloy during compression process", Materials Science and Engineering: B, vol.132, pp.179-182, 2006.
    28. Shigeharu Kamado,日本鎂合金工業現況及研究趨勢,台灣鎂合金協會,pp.60, 2001.
    29. M. R. Barnett, "A taylor model based description of the proof stress of magnesium AZ31 during hot working" , Metall. Mater. Trans. A, 34A, pp. 1799-1806, 2003.
    30. M. H. Yoo, "Slip, twinning, and fracture in hexagonal close-packed metals", Metall. Trans. A, 12, pp. 409-418, 1981.
    31. R. von Mises, Z. Angew,"Mechanics of plastic deformation in crystals",Math. Mech., 8, pp. 161-185, 1928.
    32. G. W. Groves and A. Kelly, Philos,"Independent slip systems in crystals", Mag., 8, pp. 877-887, 1963.
    33. L. Jiang and J. J. Jonas,"Effect of twinning on the flow behavior during strain path reversals in two Mg (+ Al, Zn, Mn) alloys", Scripta Mater., 58, pp. 803-806, 2008.
    34. M. R. Barnett, "Twinning and the ductility of magnesium alloys: Part II.“Contraction” twins",Mater. Sci. Eng. A, 464, pp. 8-16, 2007.
    35. E. Schmid and W. Boas, Kristallplastizität, Julius Springer, Berlin, 1935.
    36. D. W. Brown, S. R. Agnew, M. A. M. Bourke, T. M. Holden, S. C. Vogel and C. N. Tomé,"Internal strain and texture evolution during deformation twinning in magnesium", Mater. Sci. Eng. A, 399, pp. 1-12, 2005.
    37. MTanaka, AJ. Wilkinson, SG. Roberts,"Ductile–brittle transition of polycrystalline iron and iron–chromium alloys", J. Nucl. Mater., vol. 378, pp. 305-311, 2008.
    38. T. S. Kwak, Y. J. Kim, M. K. Seo and W. B. Bae, "Finite-element analysis of V-ring indenter mechanism in fine-blanking process",J. Mater. Process Tech., vol. 143-144, pp. 656-661, 2003.
    39. D. Brokken, W. A. M. Brekelmans and F. P. T. "Baaijens,Numerical modelling of the metal blanking process", J. Mater. Process Tech., vol. 83, pp. 192-199, 1998.
    40. S. K. Maiti, A. A. Ambekar, U. P. Singh, P. P. Date and K. Narasimhan,"Assessment of influence of some process parameters on sheet metal blanking", J. Mater. Process Tech., vol. 102, pp. 249-256, 2000.
    41. Marya, M., et al., Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 418(1-2): pp.341-356, 2006.

    下載圖示
    2019-07-29公開
    QR CODE