| 研究生: |
陳祉伃 Chen, Chih-Yu |
|---|---|
| 論文名稱: |
SIMA製程AZ61鎂合金壓縮與拉伸及沖剪特性研究 A Study on Compression Properties, Tensile Properties and Shear-Punch Characteristics of Strain-Induced Melt Activation (SIMA) AZ61 Magnesium Alloy |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 洪飛義 Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | AZ61鎂合金 、應變誘導熔漿活化法(SIMA) 、壓縮性質 、拉伸性質 、沖剪性質 |
| 外文關鍵詞: | AZ61, SIMA, compression properties, tensile properties, shear-punch characteristics |
| 相關次數: | 點閱:152 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎂合金具有質輕、具高比強度及可回收性等優點,因此近年來普遍應用於交通工具及3C產品上。鎂合金結構為HCP,於室溫下滑移系統不足而不易加工,導致成形性不佳。目前鎂合金的元件成形是以壓鑄法(Die casting)及半固態製程為主流。壓鑄成型具有高產能以及尺寸控制精密等優點,但工件鑄造缺陷無法完全避免,而半固態製程除了減少壓鑄法成形之孔洞生成及高固化收縮率的問題之外,亦具有近淨形之優點。半固態製程中的SIMA 製程之最大優點,在於技術門檻與投資金額相對低廉。另外,沖剪加工製程為工業界應用廣泛之板材加工方式,具有高效率、高精度、可於室溫下加工且幾乎不用後續切削動作等優點。
本研究透過熱擠型時導入應變,改良傳統式SIMA 製程之缺點,並探討SIMA材微觀組織變化對其拉伸性質與沖剪特性之影響。此外,針對SIMA 材進行半固態壓縮實驗以探討其壓縮特性,並對經壓縮後之材料進行拉伸及沖剪特性分析,最後將壓縮前及壓縮後的材料性質比較,以提供半固態製程應用依據。本實驗AZ61鎂合金擠型材,由細微晶粒所組成,於熱擠型SIMA 製程後可獲得球狀晶組織。 高溫壓縮性質顯示,當壓縮溫度高於固相線溫度,材料變形阻抗急遽下降。具有球狀晶胞特徵組織之SIMA 材,半固態溫度壓縮時,變形阻抗低於擠型材。拉伸性質發現,SIMA材強度較擠型材低,且破斷面表現為無延性之脆性破壞特徵。SIMA材經高溫壓縮之材料強度及延性皆有明顯提升,且破斷面為延性破壞特徵。沖剪試驗結果確認,SIMA材具有較擠型材更為平整之沖剪面,且經高溫壓縮後之SIMA材沖剪面更佳平整,具備優良之沖剪加工特性。
Strain-induced melt activation (SIMA) is a process with development potential due to its simplicity and low cost. The semisolid billet of AZ61 Mg alloy was fabricated by the hot extruded SIMA process. The effects of heating condition on the microstructure feature, the semi-solid forming mechanism, compressive properties, tensile properties and shear-punch properties were discussed. The grains became more globular with appropriately increasing the reheating temperatures and holding time. The deformation resistance of Mg alloys after SIMA process was lower than as-extruded at 500°C, 525°C, and 535°C. The strength of Mg alloys after SIMA process was lower than as-extruded, and its fracture surface showed brittle failure. SIMA AZ61 also showed better shear-punch characteristics than as-extruded Mg alloys. After high temperature compressive test, as-extruded Mg alloys and SIMA AZ61 showed better tensile properties and shear-punch characteristics.
1. J. F. Jiang, X. Lin, Y. Wang, J. J. Qu, S. J. Luo, "Microstructural evolution of AZ61 magnesium alloy predeformed by ECAE during semisolid isothermal treatment", Transactions of Nonferrous Metals Society of China, vol.22, pp.555-563, 2012.
2. M. M. Avedesian, H. Baker, "Magnesium and Magnesium Alloys", ASM, pp.16-18, 1999.
3. 蔡幸甫,「鎂合金產業技術及市場發展趨勢專題調查」,工研院IEK,2-5 頁,民國90 年10 月。.
4. M. M. Avedesian, H. Baker, "Magnesium and Magnesium Alloys", ASM, pp.37-43, 1999.
5. Lunder, O., T.K. Aune, and K. Nisancioglu, Effect of Mn Additions on the Corrosion Behavior of Mould-Cast Magnesium ASTM AZ91. Corrosion, 43(5): pp. 291-295, 1987.
6. C.H. Caceres, C.J. Davidson, J.R. Griffiths, C.L. Newton, Material Science and Engineering, A325, pp.344-355, 2002.
7. J. W. Edington, K. N. Melton, C. P. Cutler, "Superplasticity", Progress in Materials Science, vol.21, pp.61-158, 1976.
8. H. Y. Wang, Y. H. Su, C. Y. A. Tsao, "Structural evolution of conventional cast dendritic and spray-cast non-dendritic structures during isothermal holding in the semi-solid state", Scripta Materialia, vol.37, pp.2003-2007, 1997.
9. T. Haga, P. Kapranos, "Thixoforming of laminate made from semisolid cast strips", Journal of Materials Processing Technology, vol.157, pp.508-512, 2004.
10. A. Paes, E. J. Zoqui, "Semi-solid behavior of new Al-Si-Mg alloys for thixoforming", Materials Science and Engineering A, vol.406, pp.63-73, 2005.
11. 邱垂泓, 金屬半固態製程技術簡介. 工業材料164期, 89年8月: pp.158~160.
12. Z. Fan, "Semisolid metal processing", International Materials Reviews,vol.47, pp.49-85, 2002.
13. M. C. Flemings, R. G. Riek, K. P. Young, "Rheocasting", Materials Science and Engineering, vol.25, pp.103-117, 1976.
14. D. B. Spencer, R.M., and M. C. Flemings, Rheological behavior of Sn-15 Pct Pb in the crystallization range Metallurgical Transaction, 3.1925(1972).
15. U. Tadashi, K. Kazuo, "United States Patent 2251343", Dec.6, 2005.
16. H. V. Atkinson, "Modelling the semisolid processing of metallic alloys", Progress in Materials Science, vol.50, pp.341-412, 2005.
17. K. P. Young, C. P. Kyonka, J. A. Courtois, United States Patent 4415374. Nov.15, 1983.
18. E. E. Glickman, M. Nathan, "On the kinetic mechanism of grain boundary wetting in metals", Journal of Applied Physics, vol.85, pp.3185-3191, 1999.
19. M. X. Xia, H. X. Zheng, S. Yuan, J. G. Li, "Recrystallization of preformed AZ91D magnesium alloys in the semisolid state", Materials & Design, vol.26, pp.343-349, 2005.
20. H. Y. Xu, Z. S. Ji, M. L. Hu, Z. Y. Wang, "Microstructure of AZ91D magnesium alloy semi-solid billets prepared by SIMA method from chips", Transactions of Nonferrous Metals Society of China, vol.20, pp.S749-S753, 2010.
21. S. Kleiner, O. Beffort, P. J. Uggowitzer, "Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state", Scripta Materialia, vol.51, pp.405-410, 2004.
22. Hiroyuki Watanabe , T.M., Koichi Ishikawa , Kenji Higashi, Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia 46, pp.851–856, 2002.
23. E. Tzimas, A. Zavaliangos, "Evolution of near-equiaxed microstructure in the semisolid state", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol.289, pp.228-240, 2000.
24. L. Zhang, Y. B. Liu, Z. Y. Cao, Y. F. Zhang, Q. Q. Zhang, "Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA", Journal of Materials Processing Technology, vol.209, pp.792-797, 2009.
25. J. G. Wang, P. Lu, H. Y. Wang, J. F. Liu, Q. C. Jiang, "Semisolid microstructure evolution of the predeformed AZ91D alloy during heat treatment", Journal of Alloys and Compounds, vol.395, pp.108-112, 2005.
26. 木內學,「半熔融‧半凝固加工21 世紀展望」,塑性と加工,vol.35,369 頁,1994。.
27. H. Yan, B. F. Zhou, "Thixotropic deformation behavior of semi-solid AZ61 magnesium alloy during compression process", Materials Science and Engineering: B, vol.132, pp.179-182, 2006.
28. Shigeharu Kamado,日本鎂合金工業現況及研究趨勢,台灣鎂合金協會,pp.60, 2001.
29. M. R. Barnett, "A taylor model based description of the proof stress of magnesium AZ31 during hot working" , Metall. Mater. Trans. A, 34A, pp. 1799-1806, 2003.
30. M. H. Yoo, "Slip, twinning, and fracture in hexagonal close-packed metals", Metall. Trans. A, 12, pp. 409-418, 1981.
31. R. von Mises, Z. Angew,"Mechanics of plastic deformation in crystals",Math. Mech., 8, pp. 161-185, 1928.
32. G. W. Groves and A. Kelly, Philos,"Independent slip systems in crystals", Mag., 8, pp. 877-887, 1963.
33. L. Jiang and J. J. Jonas,"Effect of twinning on the flow behavior during strain path reversals in two Mg (+ Al, Zn, Mn) alloys", Scripta Mater., 58, pp. 803-806, 2008.
34. M. R. Barnett, "Twinning and the ductility of magnesium alloys: Part II.“Contraction” twins",Mater. Sci. Eng. A, 464, pp. 8-16, 2007.
35. E. Schmid and W. Boas, Kristallplastizität, Julius Springer, Berlin, 1935.
36. D. W. Brown, S. R. Agnew, M. A. M. Bourke, T. M. Holden, S. C. Vogel and C. N. Tomé,"Internal strain and texture evolution during deformation twinning in magnesium", Mater. Sci. Eng. A, 399, pp. 1-12, 2005.
37. MTanaka, AJ. Wilkinson, SG. Roberts,"Ductile–brittle transition of polycrystalline iron and iron–chromium alloys", J. Nucl. Mater., vol. 378, pp. 305-311, 2008.
38. T. S. Kwak, Y. J. Kim, M. K. Seo and W. B. Bae, "Finite-element analysis of V-ring indenter mechanism in fine-blanking process",J. Mater. Process Tech., vol. 143-144, pp. 656-661, 2003.
39. D. Brokken, W. A. M. Brekelmans and F. P. T. "Baaijens,Numerical modelling of the metal blanking process", J. Mater. Process Tech., vol. 83, pp. 192-199, 1998.
40. S. K. Maiti, A. A. Ambekar, U. P. Singh, P. P. Date and K. Narasimhan,"Assessment of influence of some process parameters on sheet metal blanking", J. Mater. Process Tech., vol. 102, pp. 249-256, 2000.
41. Marya, M., et al., Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 418(1-2): pp.341-356, 2006.