簡易檢索 / 詳目顯示

研究生: 特芮絲娜
Nurlianti, Erlin Tresna
論文名稱: 鈣鈦礦微結構之調控:成核與成長研究以及其對電池效應之影響
Perovskite With Controlled Microstructures: Nucleation and Growth Mechanism, and Its Effect on The Cell Performance
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 101
外文關鍵詞: lead-free perovskite, chlorine inclusion, microstructure, solar cell
相關次數: 點閱:115下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The performance of hybrid organometallic perovskite solar cell in the past two years has proven surpassed the conventional dye sensitized solar cell. Despite of the rapid progress, there are several drawbacks such as instability to air and moisture, and the use of toxic lead in the perovskite absorber layer. Sn based perovskite exhibits an absorption edge up to 1000 nm. However, the performance of Sn based perovskite of CH3NH3SnI3 is not as good as lead based perovskite of CH3NH3PbI3. The primary reason is the more severe oxidation of the CH3NH3SnI3. In this research we use chloride inclusion during formation of perovskite in Pb based perovskite to improve crystallinity of CH3NH3PbI3.
    Herein, we perform material and optical characterization of crystal CH3NH3SnI3 with chloride inclusion to study the implication of the Cl on the properties of Sn based perovskite using one-step solution process by varying the precursor ratio, annealing temperature, annealing time and mixed Pb:Sn ratio. In this study we present the observation of chlorine inclusion to the crystal perovskite by X ray Photo spectroscopy and X Ray Diffraction, film morphology by using Scanning Electron Spectroscopy, as well as their implication to material properties by using UV-Vis Spectroscopy, photoluminescence and devices performances.

    Acknowledgement iii Abstract iv Table of Contents v List of Table ix List of Figures x 1 Introduction 1 1.1 Preface 1 1.2 Objective and Motivation 2 2 Fundamental Theory and Literature Review 5 2.1 General Introduction of Perovskite Material 5 2.1.1 General Description of Perovskite Structure 5 2.1.2 Electronic properties of Organometal Halide Perovskite 7 2.1.3 Optical properties of Organometal Halide Perovskite 8 2.2 Perovskite Based Solar Cell Devices 12 2.2.1 Type of perovskite solar cell architecture 12 2.2.1.1 Mesoporous perovskite solar cell 12 2.2.1.2 Meso-superstructure Perovskite Solar Cell (MSSC) 16 2.2.1.3 Planar Heterojunction Solar Cells 17 2.2.1.4 Perovskite Tandem Solar Cell 19 2.2.1.5 Lead-free perovskite solar cell 21 3 Experimental 23 3.1 Solar Cell Fabrication 23 3.1.1 Substrate Cleaning & Etching 23 3.1.2 TiCl4 treatment 25 3.1.3 Compact Layer Spray Pyrolisis 25 3.1.4 Mesoporous TiO2 Deposition 26 3.1.5 Perovskite Synthesis & Deposition 26 3.1.5.1 One step deposition 27 3.1.5.2 Sequential step deposition 28 3.1.6 Hole transport material deposition 29 3.1.7 Metal contact deposition 29 3.2 Characterization technique 30 3.2.1 X-ray Diffraction (XRD) 30 3.2.2 Transmission Electron Microscope (TEM) 32 3.2.3 Scanning Electron Microscope (SEM) 33 3.2.4 X-ray photoemission spectroscopy (XPS) 36 3.2.5 UV-Vis NIR Spectrometer 37 3.2.6 Micro-photoluminescence 39 3.3 Solar-Cell Measurement 42 3.3.1 Solar cell simulator 42 3.3.2 Current-voltage (IV) measurement 45 3.3.2.1 Short circuit current (Jsc) 46 3.3.2.2 Open Circuit Voltage (Voc) 48 3.3.2.3 Maximum Power (PMAX), Current at PMAX (IMP), Voltage at PMAX (VMP) 49 3.3.2.4 Fill Factor (FF) 50 3.3.2.5 Power Conversion Efficiency (PCE) 51 3.3.2.6 Shunt Resistance (RSH) and Series Resistance (RS) 52 4 Result & Discussion 53 4.1 Perovskite Material Characterization 53 4.1.1 Effect of Precursor Ratio into crystallinity 53 4.1.2 Effect of chlorine inclusion in the atomic level 61 4.1.3 Degradation of perovskite in different precursor ratio 63 4.1.4 Effect of Annealing Temperature to crystallinity 65 4.1.5 Effect of annealing time to crystallinity 67 4.1.6 Effect of mixed metal cation (Pb:Sn) to crystallinity 68 4.1.7 Phase formation of perovskite under TEM observation 69 4.2 Optical properties of perovskite 72 4.2.1 Effect of precursor ration into optical properties 72 4.2.2 Effect annealing temperature into optical properties 77 4.2.3 Effect of annealing time into optical properties 79 4.2.4 Effect of different Pb:Sn ratio into optical properties 81 4.3 Device Characterization 82 4.3.1 Effect of structure change by varying precursor ratio of MAI:SnCl2 82 4.3.2 Effect of ratio of metal halide precursor (PbI2:SnCl2) 86 5 Conclusion 90 References 92

    . Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photon 2014, 8(6): 489-494.

    2. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517(7535): 476-480.

    3. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 2013, 13(4): 1764-1769.

    4. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7(9): 3061-3068.

    5. Zhang M, Yu H, Lyu M, Wang Q, Yun J-H, Wang L. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films. Chemical Communications 2014, 50(79): 11727-11730.

    6. Salim T, Sun S, Abe Y, Krishna A, Grimsdale AC, Lam YM. Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A 2015, 3(17): 8943-8969.

    7. Qing J, Chandran H-T, Cheng Y-H, Liu X-K, Li H-W, Tsang S-W, et al. Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor. ACS applied materials & interfaces 2015, 7(41): 23110-23116.

    8. Williams ST, Zuo F, Chueh C-C, Liao C-Y, Liang P-W, Jen AKY. Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS Nano 2014, 8(10): 10640-10654.

    9. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338(6107): 643-647.

    10. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342(6156): 341-344.

    11. Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S. Perovskite as light harvester: a game changer in photovoltaics. Angewandte Chemie International Edition 2014, 53(11): 2812-2824 %@ 1521-3773.

    12. Frost JM, Butler KT, Brivio F, Hendon CH, Van Schilfgaarde M, Walsh A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters 2014, 14(5): 2584-2590 %@ 1530-6984.

    13. Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin MK, Grätzel M. Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells. Advanced Functional Materials 2014, 24(21): 3250-3258.

    14. Kim H-S, Im SH, Park N-G. Organolead halide perovskite: New horizons in solar cell research. The Journal of Physical Chemistry C 2014, 118(11): 5615-5625 %@ 1932-7447.

    15. Hagenmuller P. Inorganic solid fluorides: chemistry and physics. Elsevier, 2012.

    16. Jiang LQ, Guo JK, Liu HB, Zhu M, Zhou X, Wu P, et al. Prediction of lattice constant in cubic perovskites. Journal of Physics and Chemistry of Solids 2006, 67(7): 1531-1536 %@ 0022-3697.

    17. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7(3): 982-988.

    18. Lang L, Yang J-H, Liu H-R, Xiang HJ, Gong XG. First-principles study on the electronic and optical properties of cubic ABX 3 halide perovskites. Physics Letters A 2014, 378(3): 290-293 %@ 0375-9601.

    19. Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry 2013, 52(15): 9019-9038 %@ 0020-1669.

    20. Takahashi Y, Hasegawa H, Takahashi Y, Inabe T. Hall mobility in tin iodide perovskite CH 3 NH 3 SnI 3: evidence for a doped semiconductor. Journal of Solid State Chemistry 2013, 205: 39-43 %@ 0022-4596.

    21. Jung HS, Park NG. Perovskite solar cells: from materials to devices. Small 2015, 11(1): 10-25.

    22. Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, et al. CH3NH3Sn x Pb (1–x) I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5(6): 1004-1011 %@ 1948-7185.

    23. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon 2014, 8(7): 506-514.

    24. Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3. Solid state communications 2003, 127(9): 619-623 %@ 0038-1098.

    25. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131(17): 6050-6051.

    26. Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3(10): 4088-4093.

    27. Zhao Y, Nardes AM, Zhu K. Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss 2015, 176: 301-312.

    28. Boix PP, Nonomura K, Mathews N, Mhaisalkar SG. Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today 2014, 17(1): 16-23.

    29. Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today 2015, 18(2): 65-72.

    30. Marchioro A, Teuscher J, Friedrich D, Kunst M, Van De Krol R, Moehl T, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature photonics 2014, 8(3): 250-255.

    31. Lindblad R, Bi D, Park B-w, Oscarsson J, Gorgoi M, Siegbahn H, et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. The Journal of Physical Chemistry Letters 2014, 5(4): 648-653.

    32. Noh JH, Jeon NJ, Choi YC, Nazeeruddin MK, Grätzel M, Seok SI. Nanostructured TiO 2/CH 3 NH 3 PbI 3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. Journal of Materials Chemistry A 2013, 1(38): 11842-11847.

    33. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 2012, 134(42): 17396-17399.

    34. Chung I, Lee B, He J, Chang RP, Kanatzidis MG. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485(7399): 486-489.

    35. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501(7467): 395-398.

    36. Carnie MJ, Charbonneau C, Davies ML, Troughton J, Watson TM, Wojciechowski K, et al. A one-step low temperature processing route for organolead halide perovskite solar cells. Chemical Communications 2013, 49(72): 7893-7895.

    37. Ball JM, Lee MM, Hey A, Snaith HJ. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013, 6(6): 1739-1743.

    38. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature communications 2014, 5.

    39. Unger E, Hoke E, Bailie C, Nguyen W, Bowring A, Heumüller T, et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science 2014, 7(11): 3690-3698.

    40. Jeng J-Y, Chiang Y-F, Lee M-H, Peng S-R, Guo T-F, Chen P, et al. Methylammonium lead iodide perovskite/fullerene-based hybrid solar cells. 2014.

    41. Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, et al. CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25(27): 3727-3732.

    42. O'Regan BC, Durrant JR, Sommeling PM, Bakker NJ. Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. The Journal of Physical Chemistry C 2007, 111(37): 14001-14010.

    43. Takahashi Y, Obara R, Lin Z-Z, Takahashi Y, Naito T, Inabe T, et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Transactions 2011, 40(20): 5563-5568.

    44. Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. Journal of Materials Science 2002, 37(17): 3585-3587.

    45. Kawamura Y, Mashiyama H, Hasebe K. Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3. Journal of the Physical Society of Japan 2002, 71(7): 1694-1697.

    46. Yu H, Wang F, Xie F, Li W, Chen J, Zhao N. The Role of Chlorine in the Formation Process of “CH3NH3PbI3-xClx” Perovskite. Advanced Functional Materials 2014, 24(45): 7102-7108.

    47. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A 2013, 1(18): 5628-5641.

    48. Fondell M, Gorgoi M, Boman M, Lindblad A. An HAXPES study of Sn, SnS, SnO and SnO2. Journal of Electron Spectroscopy and Related Phenomena 2014, 195: 195-199.

    49. Ng T-W, Chan C-Y, Lo M-F, Guan ZQ, Lee C-S. Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. Journal of Materials Chemistry A 2015, 3(17): 9081-9085.

    50. Koh TM, Krishnamoorthy T, Yantara N, Shi C, Leong WL, Boix PP, et al. Formamidinium tin-based perovskite with low E g for photovoltaic applications. Journal of Materials Chemistry A 2015, 3(29): 14996-15000.

    51. Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, et al. MAPbI3-xCl x Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials 2013, 25(22): 4613-4618.

    52. Zhenhua C, Hui L, Yongbing T, Xing H, Derek H, Chun-Sing L. Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption. Materials Research Express 2014, 1(1): 015034.

    53. Zhokhavets U, Erb T, Gobsch G, Al-Ibrahim M, Ambacher O. Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells. Chemical Physics Letters 2006, 418(4–6): 347-350.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE