簡易檢索 / 詳目顯示

研究生: 王立儂
Wang, Li-Nong
論文名稱: 含鋁輝石之高溫拉曼行為研究
High Temperature Raman Spectroscopy Study on Al-Orthoenstatite
指導教授: 龔慧貞
Kung, Jennifer
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 直輝石拉曼光譜儀格呂奈森參數非諧性
外文關鍵詞: Orthoenstatite, Raman, Gruneisen parameter, anharmonicity
相關次數: 點閱:49下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頑火輝石(Enstatite,MgSiO3)是斜方晶系的單鍊狀矽酸鹽礦物,也是上部地函最重要的組成礦物之一,其熱力學參數和地震波速有密切關聯。天然環境中的輝石結構中可能含有鋁(Al2O3 wt% ≤ 6.0)且鋁離子可能取代其結構中鎂離子位置(M site)或矽離子位置(T site),目前卻無人針對不同鋁含量摻雜對該材料的拉曼行為影響進行調查及討論。因此本研究主要使用高溫拉曼(23℃至 1000℃)測量 0.0 至 17.2 wt% Al2O3 輝石單晶,觀察其拉曼振動頻率隨溫度的變化趨勢 000,並利用振動頻率推算所有樣品的格呂奈森參數(γ)、非諧性(a)以及熱容量(CP)。
    本研究於高溫高壓環境下合成 0.0 至 17.2 wt% Al2O3 輝石單晶,並使用 X-Ray 單晶繞射來鑑定樣品空間群以及獲得晶格常數,使用 EDS 化學分析來分析樣品中 Al2O3 wt%。本研究除了以高溫拉曼實驗為主,還以低溫拉曼測量(-196℃至 400℃)探討振動模寬化主要因素。本研究也藉由高壓拉曼(0.0GPa 至20.0GPa)輔助實驗來探討壓力對含鋁輝石格呂奈森參數的影響。
    研究結果顯示當直輝石 Al2O3 wt%高達 17.2 時,其空間群仍保存為 Pbca,但鋁離子摻雜會使其晶格體積減少。高溫拉曼測量結果指出所有輝石振動頻率變化趨勢大多較接近線性,純鎂(0.0 wt% Al2O3)樣品 82cm-1 振動頻率以及 Al2O3 10.0 wt% 樣品82、133、205、343、680、1030cm-1 振動頻率隨溫度變化趨勢則呈現顯著非線性。純鎂樣品 82cm-1 振動頻率非線性特徵可能反映出該振動模的軟化現象,而 10.0 wt%樣品振動模的非線性特徵可能反映出這些振動模的非諧性。熱力學參數推算結果亦指出 Al2O3 10.0 wt%樣品熱容量受到的非諧效應影響最大,本研究認為這可能是因為鋁離子在該樣品結構中取代 M site 及 T site 的比例有別於其他樣品,因此建議未來針對不同鋁含量輝石的鋁離子分佈趨勢進行探討。

    Synthetic orthoenstatite (MgSiO3) with different aluminum content (0.0-17.2 wt% Al2O3) are used to investigate the effect of Al3+ coupling into the crystal structure. The chemical analysis of these samples are confirmed using EDS and the crystal structure of these samples are refined from single crystal X-ray diffraction. Raman spectra under various conditions (-194 to 1000 ℃ or up to 20 GPa) were acquired and analyzed. The Raman behavior under high temperatures are further used for thermodynamic parameter estimation, such as Gruneisen parameter, anharmonicity, and heat capacity.
    While most enstatite samples exhibit linear changes in vibrational mode frequencies with rising temperature, 0.0 wt% Al2O3 sample at 82 cm-1 and 10.0 wt% Al2O3 sample at 82, 133, 205, 343, 680, and 1030 cm-1exhibit nonlinear trends with temperature. The nonlinear characteristics of 0.0 wt% Al2O3 sample at 82 cm-1 may reflect the softening of this vibrational mode, while the trends of the 10.0 wt% Al2O3 sample may indicate the anharmonicity of these vibrational modes. Although the estimated Gruneisen parameter and anharmonicity does not seem to have systematic changes with Al3+ content, the heat capacity exhibits noteworthy differences. Particularly, the 10.0 wt% Al2O3 sample shows the largest difference between heat capacities estimated with and without considering anharmonicity, implying a significant impact in this case. The distinctive distribution of Al3+ in the 10 wt% sample, as determined through chemical analysis and single-crystal X-ray diffraction, suggests that abnormalities in Raman behavior and thermodynamic properties may be attributed to the specific Al3+ distribution in this sample.

    摘要 .......................................................................................................... Ⅰ 致謝 ...........................................................................................................Ⅵ 目錄 ...........................................................................................................Ⅶ 表目錄 .......................................................................................................Ⅷ 圖目錄 .......................................................................................................Ⅷ 第一章、 緒論 ...........................................................................................1 1.1 前言 .....................................................................................................1 1.2 文獻回顧 ............................................................................................2 1.3 熱力學應用 ........................................................................................8 1.3.1 格呂奈森參數及 P-V-T 狀態方程式 ........................................8 1.3.2 非諧性 ...........................................................................................11 第二章、 實驗及研究方法 ...................................................................13 2.1 高溫高壓合成樣品 .........................................................................13 2.2 樣品鑑定 ..........................................................................................16 2.3 拉曼光譜測量 .................................................................................17 2.3.1 室溫拉曼光譜測量 .....................................................................17 2.3.2 高溫載台溫度校正 .................................................................... 18 2.3.3 變溫拉曼光譜測量..................................................................... 22 2.3.4 鑽石高壓砧及高壓拉曼............................................................ 25 第三章、 實驗結果 ...............................................................................26 3.1 樣品敘述、X-Ray 繞射及化學分析 ........................................ 26 3.1.1 X-Ray 單晶繞射分析................................................................27 3.1.2 EDS 化學成分分析....................................................................29 3.2 室溫、變溫及高壓拉曼量測 ......................................................31 3.2.1 室溫拉曼測量 .............................................................................31 3.2.2 變溫拉曼測量 ............................................................................36 3.2.3 高壓拉曼測量 ............................................................................51 第四章、 討論 .......................................................................................54 4.1 化學成分與輝石結構的關係 ..................................................... 54 4.2 拉曼振動模寬化因素影響 ..........................................................55 4.3 拉曼振動模非線性紅位移因素分析 .........................................56 4.4 室溫、變溫及高壓拉曼量測 ......................................................58 4.5 格呂奈森參數 ................................................................................59 4.6 非諧性及熱容量 ............................................................................62 4.7 總結 ..................................................................................................66 參考文獻 ..................................................................................................67 附錄 ...........................................................................................................71

    Angel, R. J. & Hughjones, D. A. (1994). Equations of state and thermodynamic properties of enstatite pyroxenes. Journal of Geophysical Research-Solid Earth 99, 19777-19783.
    Catalano, M., Bloise, A., Pingitore, V., Miriello, D., Cazzanelli, E., Giarola, M., Mariotto, G. & Barrese, E. (2014). Effect of Mn doping on the growth and properties of enstatite single crystals. Crystal Research and Technology 49, 736-742.
    Chai, M., Brown, J. M. & Slutsky, L. J. (1997). The elastic constants of an aluminous orthopyroxene to 12.5 GPa. Journal of Geophysical Research-Solid Earth 102, 14779-14785.
    Chopelas, A. (1999). Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high-pressure spectroscopic data. American Mineralogist 84, 233-244.
    Clement, M., Padron-Navarta, J. A., Tommmmasi, A. & Mainprice, D. (2018). Nonhydrostatic stress field orientation inferred from orthopyroxene (Pbca) to lowclinoenstatite (P21/c) inversion in partially dehydrated serpentinites. American Mineralogist 103, 993-1001.
    Davies, G. F. & Dziewonski, A. M. (1975). Homogeneity and constitution of earths lower mantle and outer core. Physics of the Earth and Planetary Interiors 10, 336-343.
    Dziewonski, A. M. & Anderson, D. L. (1981). Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors 25, 297-356.
    Gavrilenko, P., Ballaran, T. B. & Keppler, H. (2010). The effect of Al and water on the compressibility of diopside. American Mineralogist 95, 608-616.
    Jackson, I. & Rigden, S. M. (1996). Analysis of P-V-T data: Constraints on the thermoelastic properties of high-pressure minerals. Physics of the Earth and Planetary Interiors 96, 85-112.
    Jackson, J. M., Palko, J. W., Andrault, D., Sinogeikin, S. V., Lakshtanov, D. L., Wang, J. Y., Bass, J. D. & Zha, C. S. (2003). Thermal expansion of natural orthoenstatite to 1473 K. European Journal of Mineralogy 15, 469-473.
    Jackson, J. M., Sinogeikin, S. V., Carpenter, M. A. & Bass, J. D. (2004). Novel phase transition in orthoenstatite. American Mineralogist 89, 239-244.
    Kieffer, S. W. (1979). Thermodynamics and Lattice-Vibrations of Minerals : Mineral Heat-Capacities and Their Relationships to Simple Lattice Vibrational Models. Reviews of Geophysics 17, 1-19.
    Krupka, K. M., Hemingway, B. S., Robie, R. A. & Kerrick, D. M. (1985). Hightemperature heat-capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite. American Mineralogist 70, 261-271.
    Kung, J., Jackson, I. & Liebermann, R. C. (2011). High-temperature elasticity of polycrystalline orthoenstatite (MgSiO3). American Mineralogist 96, 577-585.
    Lin, C. C. (2003). Pressure-induced metastable phase transition in orthoenstatite (MgSiO3) at room temperature : a Raman spectroscopic study. Journal of Solid State Chemistry 174, 403-411.
    Liu, D., Guo, X. Z., Smyth, J. R., Wang, X., Zhu, X., Miao, Y. F., Bai, J. Y. & Ye, Y. (2021). High-temperature and high-pressure Raman spectra of Fo89Fa11 and Fo58Fa42 olivines: Iron effect on thermodynamic properties. American Mineralogist 106, 1668-1678.
    Mao, H. K., Xu, J. & Bell, P. M. (1986). Calibration of the Ruby Pressure Gauge to 800-kbar Under Quasi-Hydrostatic Conditions. Journal of Geophysical ResearchSolid Earth and Planets 91, 4673-4676.
    McKeown, D. A., Bell, M. I. & Caracas, R. (2010). Theoretical determination of the Raman spectra of single-crystal forsterite (Mg2SiO4). American Mineralogist 95, 980-986.
    Periotto, B., Balic-Zunic, T., Nestola, F., Katerinopoulou, A. & Angel, R. J. (2012). Re-investigation of the crystal structure of enstatite under high-pressure conditions. American Mineralogist 97, 1741-1748.
    Reynard, B., Bass, J. D. & Brenizer, J. (2010). High-temperature elastic softening of orthopyroxene and seismic properties of the lithospheric upper mantle. Geophysical Journal International 181, 557-566.
    Richet, P., Mysen, B. O. & Ingrin, J. (1998). High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Physics and Chemistry of Minerals 25, 401-414.
    Sinogeikin, S. V., Lakshtanov, D. L., Nicholas, J. D., Jackson, J. M. & Bass, J. D. (2005). High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating. Journal of the European Ceramic Society 25, 1313-1324.
    Stangarone, C., Tribaudino, M., Prencipe, M. & Lottici, P. P. (2016). Raman modes in Pbca enstatite (Mg2Si2O6): an assignment by quantum mechanical calculation to interpret experimental results. Journal of Raman Spectroscopy 47, 1247-1258.
    Swamy, V., Dubrovinsky, L. S. & Matsui, M. (1997). High-temperature Raman spectroscopy and quasi-harmonic lattice dynamic simulation of diopside. Physics and Chemistry of Minerals 24, 440-446.
    Tribaudino, M., Mantovani, L., Bersani, D. & Lottici, P. P. (2012). Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes. American Mineralogist 97, 1339-1347.
    Xu, J. A., Huang, E., Lin, J. F. & Xu, L. Y. (1995). Raman study at high pressure and the thermodynamic properties of corundum: Application of Kieffer's model. American Mineralogist 80, 1157-1165.
    Yang, H. X. & Ghose, S. (1995). High-temperature Single Crystal X-ray-Diffraction studies of the Ortho-Proto Phase-Transition in Enstatite, Mg2Si2O6 at 1360 K. Physics and Chemistry of Minerals 22, 300-310.
    Yang, X. X., Li, J. W., Zhou, Z. F., Wang, Y., Yang, L. W., Zheng, W. T. & Sun, C. Q. (2012). Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene. Nanoscale 4, 502-510.
    Zhang, Y. (2011). Studies of Earth's Mantle using Seismic Traveltimes and Amplitudes. The University of Michigan(Geology).(Doctoral dissertation)
    Zucker, R. & Shim, S. H. (2009). In situ Raman spectroscopy of MgSiO3 enstatite up to 1550 K. American Mineralogist 94, 1638-1646.
    花天享. (2019). 利用高壓單晶 X 光繞射探討含水頑火輝石晶體結構. 地球科學研究所碩士論文. 台南市: 國立成功大學, 78.
    花柏榕, 簡淑櫻, 龔慧貞 & 王雁賓. (2012). 探索物質在極限環境之研究-大體積壓力機簡介. 科儀新知, 83-91.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE