簡易檢索 / 詳目顯示

研究生: 張沛騰
Chang, Pei-Teng
論文名稱: 2-氟乙醇及1,4-dioxane在Cu(100)表面上的熱反應與吸附位向的研究
Thermal Chemistry and Adsorption Orientation of 2-Fluoroethanol and 1,4-dioxane on Cu(100) Surface
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 55
中文關鍵詞: 超高真空銅(100)2-氟乙醇程序控溫反應/脫附反射式吸收紅外光譜
外文關鍵詞: Cu(100), UHV, 2-fluoroethanol, TPR/D, RAIRS
相關次數: 點閱:201下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是以程序控溫反應/脫附( Temperature-programmed reaction/desorption,TPR/D)和反射式吸收紅外光譜( reflection absorption infrared spectroscopy,RAIRS)技術研究在超高真空系統中FCH2CH2OH及1,4-dioxane在Cu(100)表面上的熱反應與吸附位向。FCH2CH2OH在乾淨Cu(100)表面大部分為可逆分子吸附,且當表面覆蓋量約半層分子(0.5 monolayer)時,約會有20%的FCH2CH2OH分解形成H2O、C2H4及1,4-dioxane。相反地,於吸附有氧原子的Cu(100)表面時,當FCH2CH2OH覆蓋量小於單分子層(monolayer),FCH2CH2OH會完全分解形成1,4-dioxane及FCH2CH2O(a)中間物,此中間物FCH2CH2O(a)在~160K-220K形成,當表面溫度升高到350K後,此中間物再分解形成FCH2CHO(g)產物。在乾淨Cu(100)表面上,當FCH2CH2OH分子的覆蓋量約0.25 monolayer時,其C-C-O骨架幾乎平行於表面,但隨著曝露量增加到0.5 monolayer時,其C-C-O骨架與表面傾斜;然而在氧化的Cu(100)表面上,FCH2CH2OH分子的覆蓋量約0.25 monolayer時,其C-C-O骨架並不平行於表面。

    1,4-dioxane在乾淨Cu(100)表面為可逆性吸附,而且其單層及多層分子性脫附溫度分別在212K、165K。於110K和1.5L 1,4-dioxane(約0.6 monolayer)的曝露量,其環狀結構平行吸附於表面,由2811 cm-1的"軟化"(softened)C-H伸展振動見證了C-H…Cu的交互作用。隨著曝露量增加其環狀結構逐漸地與表面傾斜;當為單分子層的覆蓋量時,估計約有50%的吸附分子傾斜於表面,此單分子層並不是緊密排列地吸附於表面,當表面溫度升高到165K並沒有造成分子的脫附,大部分原本傾斜於表面的分子轉變為平躺於表面的位向。

    Temperature-programmed reaction/desorption (TPD/R) and reflection absorption infrared spectroscopy (RAIRS) have been employed to investigate the thermal reactions and adsorption geometry of FCH2CH2OH and 1,4-dioxane molecules on clean and oxygen-preadsorbed Cu(100) surfaces. Molecular desorption predominates in heating FCH2CH2OH adsorbed on clean Cu(100). But ~20% adsorbed FCH2CH2OH molecules at about half monolayer coverage dissociate on the surface to form water, ethylene, and 1,4-dioxane. On the contrary, monolayer FCH2CH2OH completely dissociates on oxidized Cu(100) to form 1,4-dioxane and the surface intermediate of FCH2CH2O(a) which further decomposes to evolve FCH2CHO(g) at temperature higher than ~350 K. The decomposition of FCH2CH2OH to form FCH2CH2O(a) on oxidized Cu(100) begins at ~160 K and is completed prior to 220 K. On clean Cu(100), FCH2CH2OH molecules at ~0.25 monolayer coverage are adsorbed with the C-C-O skeleton approximately parallel to the surface. The C-C-O skeleton tilts away from the surface as the exposure is increased to a half monolayer coverage. However the parallel C-C-O orientation is not observed on the oxidized surface, even at the FCH2CH2OH exposure for a 0.25 monolayer coverage.
    1,4-dioxane is adsorbed reversibly on the surface with monolayer desorption at 212 K and multilayer desorption at ~165 K at 4 L exposure. Below ~1.5 L exposure, i.e. 0.6 monolayer coverage, 1,4-dioxane molecules are adsorbed with the ring approximately parallel to the surface. C-H…Cu interaction is evidenced by the C-H vibrational mode softening of 2811 cm-1. Increasing 1,4-dioxane exposure leads to tilted geometry for some of the adsorbed molecules: ~50% at a monolayer coverage at 110 K. However, the monolayer structure is not closely-packed at 110 K, most of the tilted molecules change to flat-lying geometry as the surface temperature is increased to 165 K just prior to the onset of molecular desorption.

    第一章、緒論…………………………………………………1 第二章、表面研究之分析技術 2.1 歐傑電子能譜………………………………………5 2.2 低能量電子繞射……………………………………10 2.3 程式控溫反應/脫附………………………………12 2.4 反射式紅外光譜儀…………………………………14 第三章、實驗系統與方法 3.1 超高真空系統………………………………………17 3.2 Cu(100)單晶表面的清潔及氧化表面的製備……19 3.3 藥品及其前處理……………………………………20 第四章、結果與討論 4.1 FCH2CH2OH在Cu(100)表面上的吸附及反應………21 4.1.1 程序控溫反應/脫附實驗………………………21 4.1.2 反射式吸收紅外光光譜實驗…………………30 4.2 1,4-dioxane在Cu(100)表面上的吸附及反應………41 4.2.1 程序控溫反應/脫附實驗………………………..41 4.2.2 反射式吸收紅外光光譜實驗…………………44 第五章、結論………………………………………51 參考文獻……………………………………………53 圖表目錄 圖2.1 歐傑電子激發示意圖……………………………………………6 圖2.2 AES之能階示意圖……………………………………………7 圖2.3 歐傑電子譜儀簡圖..……………………………………………8 圖2.4 A沉積在B上之歐傑電子譜強度圖……………………………9 圖2.5 LEED裝置結構示意圖………………………………………….11 圖2.6固體內電子動能與平均自由徑之關係圖………………………11 圖2.7 程溫反應/脫附儀器示意圖……………………………………13 圖2.8 紅外光在表面s和p向量極化光示意圖……………………....14 圖2.9 紅外光譜儀架構示意圖……………………………………… 16 圖3.1 超高真空系統儀器架構示意………………………………… 18 圖4.1.1不同曝露量的2-氟乙醇時,H2O、C2H4、FCH2CH2OH及1,4-dioxane脫附的 TPR/D圖譜………………………………22 圖4.1.2不同曝露量的2-氟乙醇時,FCH2CHO、H2、H2O及1,4-dioxane脫附的 TPR/D圖譜……………………..…..……26 圖4.1.3表面溫度為115K時不同曝露量的2-氟乙醇吸附在乾淨Cu(100)表面上之 RAIR光譜圖……………………………... 31 圖4.1.4在乾淨Cu(100)表面於115K釋放2L 2-氟乙醇隨溫度變化實驗之 RAIR光譜圖.........................................................36 圖4.1.5表面溫度為115K時不同曝露量的2-氟乙醇吸附在氧化的Cu(100)表面上之 RAIR光譜圖……..…………………….38 圖4.1.6在氧化的Cu(100)表面於115K吸附2L 2-氟乙醇隨溫度變化實驗之 RAIR光譜圖………………………………………….39 圖4.2.1不同曝露量的1,4-dioxane時,1,4-dioxane脫附的TPR/D圖譜……………………42 圖4.2.2表面溫度為110K時釋放不同曝露量的1,4-dioxane吸附在乾淨Cu(100)表面上 之RAIR光譜圖…………………….….45 圖4.2.3在乾淨Cu(100)表面於110K釋放2.5L 1,4-dioxane隨溫度變化實驗的 RAIR光譜圖……..………………….………….50 表3.1 在實驗中所使用過的藥品清單…………………………….20 表4.1.1 FCH2CH2OH在乾淨 Cu(100) 與 FCH2CH2O在氧化的Cu(100)表面的 振動頻率及振動模式(cm-1)……..……….32 表4.2.1 1,4-dioxane的振動頻率及振動模式(cm-1)……....…….…46

    1. Lin, J.-L.; Teplyakov, A.V.; Bent, B.E. J. Phys. Chem. 100, 10721, 1996.
    2. Wachs, I.E.; Madix, R.J. Appl. Surf. Sci. 1, 303, 1978.
    3. Gellman, A.J.; Dai, Q. J. Am. Chem. Soc. 115, 714, 1993.
    4. Sexton, B.A. Surf. Sci. 88, 299, 1979.
    5. Bowker, M.; Madix, R.J. Surf. Sci. 116, 549, 1982.
    6. Brown, N.F.; Barteau, M.A. J. Phys. Chem. 98, 12737, 1994.
    7. Street, S.C.; Gellman, A.J. J. Phys. Chem. 100, 8338, 1996.
    8. Hassel, O. and Viervoll, H. Acta. Chem. Scand. 1, 149, 1947.
    9. Tables of Interatomic Distances and Configurations in Molecules and Ions, Eds. A. D. Mitchell and L. C. Cross (Burlington House, London, 1958).
    10. Walczak, M. M. and Thiel, P. A. Surf. Sci. 220, L647, 1989.
    11. Walczak, M. M. and Thiel, P. A. Surf. Sci. 220, 180, 1990.
    12. Heiland, A. and Christmann, H. Surf. Sci. 355, 31, 1996.
    13. Raval, R. and Chesters, M. A. Surf. Sci. 219, L505, 1989.
    14. Raval, R.; Parker, S. F. and Chesters, M. A. Surf. Sci. 289, 227, 1993.
    15. Teplyakov, A. V.; Bent, B. E.; J. Eng, Jr. and J. G. Chen, Surf. Sci. 399,
    L342, 1998.
    16. Syomin, D. and Koel, B. E. Surf. Sci. 498, 61, 2002.
    17. Malherbe, F. E. and Bernstein, H. J. Am. Chem. Soc. 74, 4408, 1952.
    18. Ellestad, O. H.; Klaboe, P. and Hagen, G. Spectrochim. Acta. 27A, 1025, 1971.
    19. Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated
    Volume II, J. Phys. Chem. Ref. Data 6, 3, 993, 1972.
    20. Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley &
    Sons. New York, p43-98, 1997.
    21. Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley &
    Sons. New York, p99-133, 1997.
    22. Ertl, G. and Kuppers, J. Low Energy Electrons and Surface Chemistry, Verlag
    Chemie, Germany, p22, 1974.
    23. 林敬二, 林宗義, 儀器分析(下), 美亞書版, 第384頁, 1994年
    24. Prutton, M. Surface Physics, Oxford University Pres, 1983
    25. 沈青嵩, 科儀新知, 第十九卷第二期, 第66頁, 八十六年十月.
    26. Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley &
    Sons, New York, p323-338, 1997.
    27. 國立成功大學化學所 李明羲碩士論文 2001
    28. Vickerman, J.C. Surface Analysis-The Principle Techniques, John Wiley &
    Sons, New York, p278, 1997
    29. Wuttig, M.; Franchy, R.; Ibach, H. Surf. Sci. 213, 103, 1989.
    30. Elight Peak Index of Mass Spectra, 4th ed.; The Royal Society of Chemistry,
    Vol. 1, ISBN-0-85186-417-1, 1991.
    31. Chang, P.-T.; Chen, C.-Y.; Lin, J.-L. Surf. Sci. Lett. 524, L96, 2003.
    32. Jenks, C.J.;Bent, B.E.; Bernstein, N.; Zaera, F. Surf. Sci. Lett. 277, L89,
    1992.
    33. Ellis, T.H.; Kruus, E.J.; Wang, H. J. Vac. Sci. Technol. A 11, 2117, 1993.
    34. CRC Hand Book of Chemistry and Physics, Editor: D.R. Lide, 71st ed.,
    CRC press, Boca Raton, FL, 1991.
    35. Su, C.; Yeh, J.-C.; Chen, C.-C.; Lin, J.-C.; Lin, J.-L. J. Catal. 194, 45,
    2000.
    36. Hagedorn, C.J.; Weiss, M.J.; Weinberg, W.H. J. Am. Chem. Soc. 120, 11824,
    1998.
    37. Lin, J.-L.; Bent, B.E. J. Am. Chem. Soc. 115, 6943, 1993.
    38. Kotkar, D.; Mahajan, S.W.; Mandal, A.K.; Ghosh, P.K. J. Chem. Soc. Perkin
    Trans. I No.7-8, 1749, 1988.
    39. Bartlett, P.D.; Lewis, E.S. J. Am. Chem. Soc. 72, 405, 1950.
    40. Olan, G.A.; Fung, A.P.; Malhotra, R. Synthesis, No.5-8, 474, 1981.
    41. Tasker, C.W.; Purves, C.B. J. Am. Chem. Soc. 71, 1017, 1949.
    42. Wyn-Jones,E.; Orville-Thomas, W.J. J. Mol. Struct. 1, 79, 1967-1968.
    43. Pertilla, M.; Murto, J.; Kivinen, A.; Turunen, K. Spectrochim. Acta 34A, 9,
    1978.
    44. Buckley, P.; Giguere, P.G. ;Yamamoto, D. Can. J. Chem. 46, 2917, 1968.
    45. Hagen, K.; Hedberg, K. J. Am. Chem. Soc. 95, 8263, 1973.
    46. Huang, J.; Hedberg, K. J. Am. Chem. Soc. 111, 6909,1989.
    47. Jensen, F. R. and Neese, R. A. J. Am. Chem. Soc. 93, 6329, 1971.
    48. Davis, M. and Hassel, O. Acta Chem. Scand. 17, 1181, 1963.
    49. Langer, A. J. Phys. Chem. 54, 618, 1950.
    50. Redhead, P. A. Vacuum 12, 203, 1962.

    下載圖示 校內:2004-06-18公開
    校外:2004-06-18公開
    QR CODE