| 研究生: |
張沛騰 Chang, Pei-Teng |
|---|---|
| 論文名稱: |
2-氟乙醇及1,4-dioxane在Cu(100)表面上的熱反應與吸附位向的研究 Thermal Chemistry and Adsorption Orientation of 2-Fluoroethanol and 1,4-dioxane on Cu(100) Surface |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 超高真空 、銅(100) 、2-氟乙醇 、程序控溫反應/脫附 、反射式吸收紅外光譜 |
| 外文關鍵詞: | Cu(100), UHV, 2-fluoroethanol, TPR/D, RAIRS |
| 相關次數: | 點閱:201 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是以程序控溫反應/脫附( Temperature-programmed reaction/desorption,TPR/D)和反射式吸收紅外光譜( reflection absorption infrared spectroscopy,RAIRS)技術研究在超高真空系統中FCH2CH2OH及1,4-dioxane在Cu(100)表面上的熱反應與吸附位向。FCH2CH2OH在乾淨Cu(100)表面大部分為可逆分子吸附,且當表面覆蓋量約半層分子(0.5 monolayer)時,約會有20%的FCH2CH2OH分解形成H2O、C2H4及1,4-dioxane。相反地,於吸附有氧原子的Cu(100)表面時,當FCH2CH2OH覆蓋量小於單分子層(monolayer),FCH2CH2OH會完全分解形成1,4-dioxane及FCH2CH2O(a)中間物,此中間物FCH2CH2O(a)在~160K-220K形成,當表面溫度升高到350K後,此中間物再分解形成FCH2CHO(g)產物。在乾淨Cu(100)表面上,當FCH2CH2OH分子的覆蓋量約0.25 monolayer時,其C-C-O骨架幾乎平行於表面,但隨著曝露量增加到0.5 monolayer時,其C-C-O骨架與表面傾斜;然而在氧化的Cu(100)表面上,FCH2CH2OH分子的覆蓋量約0.25 monolayer時,其C-C-O骨架並不平行於表面。
1,4-dioxane在乾淨Cu(100)表面為可逆性吸附,而且其單層及多層分子性脫附溫度分別在212K、165K。於110K和1.5L 1,4-dioxane(約0.6 monolayer)的曝露量,其環狀結構平行吸附於表面,由2811 cm-1的"軟化"(softened)C-H伸展振動見證了C-H…Cu的交互作用。隨著曝露量增加其環狀結構逐漸地與表面傾斜;當為單分子層的覆蓋量時,估計約有50%的吸附分子傾斜於表面,此單分子層並不是緊密排列地吸附於表面,當表面溫度升高到165K並沒有造成分子的脫附,大部分原本傾斜於表面的分子轉變為平躺於表面的位向。
Temperature-programmed reaction/desorption (TPD/R) and reflection absorption infrared spectroscopy (RAIRS) have been employed to investigate the thermal reactions and adsorption geometry of FCH2CH2OH and 1,4-dioxane molecules on clean and oxygen-preadsorbed Cu(100) surfaces. Molecular desorption predominates in heating FCH2CH2OH adsorbed on clean Cu(100). But ~20% adsorbed FCH2CH2OH molecules at about half monolayer coverage dissociate on the surface to form water, ethylene, and 1,4-dioxane. On the contrary, monolayer FCH2CH2OH completely dissociates on oxidized Cu(100) to form 1,4-dioxane and the surface intermediate of FCH2CH2O(a) which further decomposes to evolve FCH2CHO(g) at temperature higher than ~350 K. The decomposition of FCH2CH2OH to form FCH2CH2O(a) on oxidized Cu(100) begins at ~160 K and is completed prior to 220 K. On clean Cu(100), FCH2CH2OH molecules at ~0.25 monolayer coverage are adsorbed with the C-C-O skeleton approximately parallel to the surface. The C-C-O skeleton tilts away from the surface as the exposure is increased to a half monolayer coverage. However the parallel C-C-O orientation is not observed on the oxidized surface, even at the FCH2CH2OH exposure for a 0.25 monolayer coverage.
1,4-dioxane is adsorbed reversibly on the surface with monolayer desorption at 212 K and multilayer desorption at ~165 K at 4 L exposure. Below ~1.5 L exposure, i.e. 0.6 monolayer coverage, 1,4-dioxane molecules are adsorbed with the ring approximately parallel to the surface. C-H…Cu interaction is evidenced by the C-H vibrational mode softening of 2811 cm-1. Increasing 1,4-dioxane exposure leads to tilted geometry for some of the adsorbed molecules: ~50% at a monolayer coverage at 110 K. However, the monolayer structure is not closely-packed at 110 K, most of the tilted molecules change to flat-lying geometry as the surface temperature is increased to 165 K just prior to the onset of molecular desorption.
1. Lin, J.-L.; Teplyakov, A.V.; Bent, B.E. J. Phys. Chem. 100, 10721, 1996.
2. Wachs, I.E.; Madix, R.J. Appl. Surf. Sci. 1, 303, 1978.
3. Gellman, A.J.; Dai, Q. J. Am. Chem. Soc. 115, 714, 1993.
4. Sexton, B.A. Surf. Sci. 88, 299, 1979.
5. Bowker, M.; Madix, R.J. Surf. Sci. 116, 549, 1982.
6. Brown, N.F.; Barteau, M.A. J. Phys. Chem. 98, 12737, 1994.
7. Street, S.C.; Gellman, A.J. J. Phys. Chem. 100, 8338, 1996.
8. Hassel, O. and Viervoll, H. Acta. Chem. Scand. 1, 149, 1947.
9. Tables of Interatomic Distances and Configurations in Molecules and Ions, Eds. A. D. Mitchell and L. C. Cross (Burlington House, London, 1958).
10. Walczak, M. M. and Thiel, P. A. Surf. Sci. 220, L647, 1989.
11. Walczak, M. M. and Thiel, P. A. Surf. Sci. 220, 180, 1990.
12. Heiland, A. and Christmann, H. Surf. Sci. 355, 31, 1996.
13. Raval, R. and Chesters, M. A. Surf. Sci. 219, L505, 1989.
14. Raval, R.; Parker, S. F. and Chesters, M. A. Surf. Sci. 289, 227, 1993.
15. Teplyakov, A. V.; Bent, B. E.; J. Eng, Jr. and J. G. Chen, Surf. Sci. 399,
L342, 1998.
16. Syomin, D. and Koel, B. E. Surf. Sci. 498, 61, 2002.
17. Malherbe, F. E. and Bernstein, H. J. Am. Chem. Soc. 74, 4408, 1952.
18. Ellestad, O. H.; Klaboe, P. and Hagen, G. Spectrochim. Acta. 27A, 1025, 1971.
19. Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated
Volume II, J. Phys. Chem. Ref. Data 6, 3, 993, 1972.
20. Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley &
Sons. New York, p43-98, 1997.
21. Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley &
Sons. New York, p99-133, 1997.
22. Ertl, G. and Kuppers, J. Low Energy Electrons and Surface Chemistry, Verlag
Chemie, Germany, p22, 1974.
23. 林敬二, 林宗義, 儀器分析(下), 美亞書版, 第384頁, 1994年
24. Prutton, M. Surface Physics, Oxford University Pres, 1983
25. 沈青嵩, 科儀新知, 第十九卷第二期, 第66頁, 八十六年十月.
26. Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley &
Sons, New York, p323-338, 1997.
27. 國立成功大學化學所 李明羲碩士論文 2001
28. Vickerman, J.C. Surface Analysis-The Principle Techniques, John Wiley &
Sons, New York, p278, 1997
29. Wuttig, M.; Franchy, R.; Ibach, H. Surf. Sci. 213, 103, 1989.
30. Elight Peak Index of Mass Spectra, 4th ed.; The Royal Society of Chemistry,
Vol. 1, ISBN-0-85186-417-1, 1991.
31. Chang, P.-T.; Chen, C.-Y.; Lin, J.-L. Surf. Sci. Lett. 524, L96, 2003.
32. Jenks, C.J.;Bent, B.E.; Bernstein, N.; Zaera, F. Surf. Sci. Lett. 277, L89,
1992.
33. Ellis, T.H.; Kruus, E.J.; Wang, H. J. Vac. Sci. Technol. A 11, 2117, 1993.
34. CRC Hand Book of Chemistry and Physics, Editor: D.R. Lide, 71st ed.,
CRC press, Boca Raton, FL, 1991.
35. Su, C.; Yeh, J.-C.; Chen, C.-C.; Lin, J.-C.; Lin, J.-L. J. Catal. 194, 45,
2000.
36. Hagedorn, C.J.; Weiss, M.J.; Weinberg, W.H. J. Am. Chem. Soc. 120, 11824,
1998.
37. Lin, J.-L.; Bent, B.E. J. Am. Chem. Soc. 115, 6943, 1993.
38. Kotkar, D.; Mahajan, S.W.; Mandal, A.K.; Ghosh, P.K. J. Chem. Soc. Perkin
Trans. I No.7-8, 1749, 1988.
39. Bartlett, P.D.; Lewis, E.S. J. Am. Chem. Soc. 72, 405, 1950.
40. Olan, G.A.; Fung, A.P.; Malhotra, R. Synthesis, No.5-8, 474, 1981.
41. Tasker, C.W.; Purves, C.B. J. Am. Chem. Soc. 71, 1017, 1949.
42. Wyn-Jones,E.; Orville-Thomas, W.J. J. Mol. Struct. 1, 79, 1967-1968.
43. Pertilla, M.; Murto, J.; Kivinen, A.; Turunen, K. Spectrochim. Acta 34A, 9,
1978.
44. Buckley, P.; Giguere, P.G. ;Yamamoto, D. Can. J. Chem. 46, 2917, 1968.
45. Hagen, K.; Hedberg, K. J. Am. Chem. Soc. 95, 8263, 1973.
46. Huang, J.; Hedberg, K. J. Am. Chem. Soc. 111, 6909,1989.
47. Jensen, F. R. and Neese, R. A. J. Am. Chem. Soc. 93, 6329, 1971.
48. Davis, M. and Hassel, O. Acta Chem. Scand. 17, 1181, 1963.
49. Langer, A. J. Phys. Chem. 54, 618, 1950.
50. Redhead, P. A. Vacuum 12, 203, 1962.