簡易檢索 / 詳目顯示

研究生: 洪琬珺
Hung, Wan-Chun
論文名稱: 結合小分子標靶幹細胞藥物應用於食道癌的治療
Targeting cancer stem cell by small molecular compounds in esophageal cancer
指導教授: 呂佩融
Lu, Pei-Jung
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 73
中文關鍵詞: 食道癌癌症幹細胞合併化放療抗藥性
外文關鍵詞: ESCC (Esophageal Squamous cell carcinoma), Cancer stem cell, CCRT-resistance (Concurrent Chemoradiation Therapy)
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在台灣,食道癌是一個常見且致命的惡性腫瘤,鳞狀細胞癌是最常見的病理組織型態,食道癌病人即使接受手術與化學合併放射線治療,其五年存活率很少大於25%;有許多證據顯示食道癌病人對於合併化放療都出現抗藥性情形,而導致這個情況的原因有可能是因為癌症幹細胞具有抗藥性的特性進而導致腫瘤復發。在過去的研究指出癌症幹細胞在不同的癌症中參與腫瘤的形成、發展以及轉移,因此我們的研究目的是尋找出可以應用在食道癌中標靶癌症幹細胞的新穎小分子藥物或是已上市藥品,來提高病人的存活率。首先,我們已經建立了食道癌幹細胞球團的培養方式,利用WST-1去偵測新穎小分子藥物處理過後的癌症幹細胞的細胞存活率;在藥物篩選中,我們發現ILK (integrin-linked kinase)抑制劑-NCKU-1501對於癌症幹細胞具有高度抑制細胞存活率,而在功能性分析上發現,NCKU-1501可提高食道癌細胞對於合併化放療的療效,並且進一步發現,NCKU-1501會透過降低幹細胞以及抗藥性相關的蛋白質表現而抑制癌症幹細胞球團。同時也使用生物資訊資料庫-connectivity map (cmap)輸入先前微陣列矩晶片分析的基因變異結果,來預測可能影響幹細胞與非幹細胞基因變異的已知上市藥物,我們發現維他命B的衍生物-NCKU-150不會直接抑制細胞活性,但會透過抑制幹細胞特性以及抗藥性相關途徑影響癌症幹細胞球團形成,有趣的是,當癌症幹細胞處理NCKU-1507會促進細胞對於傳統藥物cisplatin的敏感度提高。綜合以上結果,在未來我們認為NCKU-1501是具有有效標靶癌症幹細胞的小分子藥物;此外NCKU-1507 可能會促進癌症幹細胞轉變成一般癌細胞進而提高細胞對於傳統化療藥物cisplatin的療效。

    Esophageal cancer is a common and fatal malignancy. Squamous cell carcinoma is the predominant histological tumor type in Taiwan. Even after surgery and/or concurrent chemoradiation therapy (CCRT), 5-year survival rate of patients is less than 25%. Recently, there are more evidences showing CCRT-resistance in ESCC patients. One possible reason is because of cancer stem cells (CSCs) which have the characteristic of drug-resistance and lead to tumor relapse. Previous studies report that CSCs are responsible for tumor initiation, progression and metastasis in different cancers. In this study, we aimed to investigate novel compounds or defined compounds targeting CSCs in ESCC. First, we established the CSCs culture system which enriched CSCs in the tumor sphere of ESCC cell lines. CSCs were treated with novel compounds and their viabilities were determined by WST-1 assay. The results demonstrated that NCKU-1501, an ILK (integrin-link kinase) inhibitor, had a potency for targeting ESCC CSCs and non-CSCs from drug screening. Functional assays showed that NCKU-1501 increased the CCRT response of ESCC cell lines. Moreover, NCKU-1501 inhibited ESCC tumor sphere formation through down-regulating the stemness- and drug-resistance-associated genes expression. In addition, we used Connectivity Map to predict compounds which were able to convert CSCs specific genes expression to the levels of ESCC non-CSCs cell lines. NCKU-1507, vitamin B derivative, didn’t directly inhibit cell viability, but it suppressed the tumor sphere formation via down-regulating stemness- and drug-resistance-associated genes expression. Interestingly, NCKU-1507 could increase the cisplatin sensitivity of the ESCC tumor sphere. In conclusion, NCKU-1501 may be a potential therapeutic compound targeting ESCC CSCs. NCKU-1507 may reverse ESCC CSCs specific gene expression and increase ESCC sensitivity to cisplatin.

    Abstract i 中文摘要 iii 誌謝 iv Content v Abbreviations 1 Introduction 2 Materials and Methods 10 Results 20 Tumor sphere showed drug-resistance of conventional cancer drug in ESCC 20 NCKU-1501 was a candidate compound for targeting CSCs in ESCC 20 NCKU-1501 increased the sensitivity of irradiation in ESCC 21 NCKU-1501 inhibited the capacity of CSC self-renewal 22 NCKU-1501 induced the cell death via increasing sub-G1 population 23 NCKU-1501 induced the cell death through apoptosis 24 NCKU-1501 suppressed stemness and drug-resistance protein expression in tumor sphere 24 ILK may play an important role in tumor sphere 25 NCKU-1507 (NCKU-1507) may reverse the mRNA expression of stemness and drug-resistance in tumor sphere 27 NCKU-1507 may increase the cisplatin sensitivity in ESCC tumor sphere 29 Conclusion and Discussion 30 Figure and Table 34 Figure 1. NCKU-1501 inhibited cell viability in tumor sphere and parental cell. 34 Figure 2. NCKU-1501 inhibited cell colony formation. 35 Figure 3. NCKU-1501 increased CCRT response 36 Figure 4. NCKU-1501 inhibited the capacity of CSC self-renewal in ESCC. 38 Figure 5. Cell cycle analysis in ESCC CSCs. 39 Figure 6. NCKU-1501 increased sub-G1 population leading to cell death in ESCC. 40 Figure 7. NCKU-1501 increased sub-G1 population leading to cell death in ESCC CSCs. 41 Figure 8. NCKU-1501 increased sub-G1 population leading to cell death in ESCC CSCs. 42 Figure 9. NCKU-1501 inhibited cell survival and induced cell death in ESCC. 43 Figure 10. NCKU-1501 inhibited cell survival and induced cell death in ESCC. 44 Figure 11. NCKU-1501 abolished the stemness and drug-resistance expression of protein level in CE48T tumor sphere. 45 Figure 12. NCKU-1501 abolished the stemness and drug-resistance expression of protein level in KYSE170 tumor sphere. 46 Figure 13. Knockdown of ILK expression decreased the tumor sphere formation ability. 47 Figure 14. Candidate compounds which were predicted form Cmap did not induce cell death in ESCC. 48 Figure 15. Gene expression profiles of stemness and drug-resistance of sphere in adhesion condition. 49 Figure 16. Gene expression of stemness and drug-resistance in NCKU-1508-treated cell. 50 Figure 17. Gene expression of stemness and drug-resistance in NCKU-1506-treated cell. 51 Figure 18. Gene expression of stemness and drug-resistance in NCKU-1510-treated cell. 52 Figure 19. Gene expression of stemness and drug-resistance in NCKU-1511-treated cell. 53 Figure 20. NCKU-1507 reverses the stemness and drug-resistance mRNA expression levels of tumor sphere in 24hr. 54 Figure 21. NCKU-1507 inhibited tumor sphere formation ability. 55 Figure 22. NCKU-1507 (NCKU-1507) increased the cisplatin sensitivity in NCKU-1507-treated sphere cell. 56 Figure 23. NCKU-1507 reversed the stemness and drug-resistance mRNA expression level of tumor sphere for 5days in KYSE170. 57 Figure 24. NCKU-1507 reversed the ABCG2 protein expression in KYSE170 for 5 days. 58 Table 1. The inhibitory concentration (μM) of 50% (IC50) of novel compounds in parental and tumor sphere cell in ESCC. 59 Table 2. Primers of quantitative reverse transcription PCR 60 Table 3 Antibodies of immunoblot 61 References 62 Appendix 69 Appendix 1. 69 Appendix 2. 70 Appendix 3. 71 Appendix 4.. 72 Appendix 5.. 73

    1.Ke, L., Mortality and incidence trends from esophagus cancer in selected geographic areas of China circa 1970-90. Int J Cancer, 2002. 102(3): p. 271-4.
    2. Kim, T., et al., Esophageal cancer--the five year survivors. J Surg Oncol, 2011. 103(2): p. 179-83.
    3. U.S, N.I.o.H.o., What you need to know about cancer of the esophagus. NIH 2013. No. 13-1557.
    4. Sitas, F., et al., InterSCOPE study: Associations between esophageal squamous cell carcinoma and human papillomavirus serological markers. J Natl Cancer Inst, 2012. 104(2): p. 147-58.
    5. Cameron, A.J. and Y. Romero, Symptomatic gastro-oesophageal reflux as a risk factor for oesophageal adenocarcinoma. Gut, 2000. 46(6): p. 754-5.
    6. Toh, Y., et al., Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. Int J Clin Oncol, 2010. 15(2): p. 135-44.
    7. Scarpa, M., et al., Systematic review of health-related quality of life after esophagectomy for esophageal cancer. World J Gastroenterol, 2011. 17(42): p. 4660-74.
    8. Coia, L.R., et al., Outcome of patients receiving radiation for cancer of the esophagus: results of the 1992-1994 Patterns of Care Study. J Clin Oncol, 2000. 18(3): p. 455-62.
    9. Hsu, P.K., et al., Prognostic factors for post-recurrence survival in esophageal squamous cell carcinoma patients with recurrence after resection. J Gastrointest Surg, 2011. 15(4): p. 558-65.
    10. Clevers, H., The cancer stem cell: premises, promises and challenges. Nat Med, 2011. 17(3): p. 313-9.
    11. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
    12. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
    13. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
    14. Alvarez, M., A question of supply and demand. Nature, 2007. 445(7123): p. 124.
    15. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res, 2007. 67(3): p. 1030-7.
    16. Zhang, S., et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res, 2008. 68(11): p. 4311-20.
    17. Maitland, N.J. and A.T. Collins, Prostate cancer stem cells: a new target for therapy. J Clin Oncol, 2008. 26(17): p. 2862-70.
    18. Gerlinger, M., et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 2012. 366(10): p. 883-92.
    19. Donnenberg, V.S. and A.D. Donnenberg, Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol, 2005. 45(8): p. 872-7.
    20. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003. 63(18): p. 5821-8.
    21. Korkaya, H. and M.S. Wicha, Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs, 2007. 21(5): p. 299-310.
    22. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 2008. 15(3): p. 504-14.
    23. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5.
    24. Lawson, D.A. and O.N. Witte, Stem cells in prostate cancer initiation and progression. J Clin Invest, 2007. 117(8): p. 2044-50.
    25. Brabletz, T., et al., Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005. 5(9): p. 744-9.
    26. Ho, M.M., et al., Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res, 2007. 67(10): p. 4827-33.
    27. Frank, N.Y., et al., ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res, 2005. 65(10): p. 4320-33.
    28. Deeley, R.G., C. Westlake, and S.P. Cole, Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev, 2006. 86(3): p. 849-99.
    29. Dubrovska, A., et al., CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer, 2012. 107(1): p. 43-52.
    30. Diehn, M., et al., Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 2009. 458(7239): p. 780-3.
    31. Cheng, T.S., et al., SUMO-1 modification of centrosomal protein hNinein promotes hNinein nuclear localization. Life Sci, 2006. 78(10): p. 1114-20.
    32. Hu, Y. and L. Fu, Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res, 2012. 2(3): p. 340-56.
    33. Takebe, N., et al., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol, 2011. 8(2): p. 97-106.
    34. Krop, I., et al., Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol, 2012. 30(19): p. 2307-13.
    35. Schott, A.F., et al., Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res, 2013. 19(6): p. 1512-24.
    36. Tsuruo, T., et al., Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res, 1981. 41(5): p. 1967-72.
    37. Saeki, T., et al., Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J Clin Oncol, 2007. 25(4): p. 411-7.
    38. Azzi, S., et al., Differentiation therapy: targeting human renal cancer stem cells with interleukin 15. J Natl Cancer Inst, 2011. 103(24): p. 1884-98.
    39. Persano, L., et al., BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1alpha stability and MGMT expression. Cell Death Dis, 2012. 3: p. e412.
    40. Cord N and S. Laufer, Targeting Cancer Stem Cells with Defined Compounds and Drugs.Journal of Cancer Research, 2013. 2: p. 36-67.
    41. Bao, B., et al., Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila), 2012. 5(3): p. 355-64.
    42. Yeh, C.T., et al., Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med, 2012. 186(11): p. 1180-8.
    43. Lee, S.L., et al., Identification and characterization of a novel integrin-linked kinase inhibitor. J Med Chem, 2011. 54(18): p. 6364-74.
    44. Lonsdale, D., Thiamine tetrahydrofurfuryl disulfide: a little known therapeutic agent. Med Sci Monit, 2004. 10(9): p. Ra199-203.
    45. Nozaki, S., et al., Thiamine tetrahydrofurfuryl disulfide improves energy metabolism and physical performance during physical-fatigue loading in rats. Nutr Res, 2009. 29(12): p. 867-72.
    46. Kobayashi, T., et al., Fursultiamine, a vitamin B1 derivative, enhances chondroprotective effects of glucosamine hydrochloride and chondroitin sulfate in rabbit experimental osteoarthritis. Inflamm Res, 2005. 54(6): p. 249-55.
    47. Luo, A., et al., Differentiation-associated genes regulated by c-Jun and decreased in the progression of esophageal squamous cell carcinoma. PLoS One, 2014. 9(5): p. e96610.
    48. Luo, A., et al., Discovery of Ca2+-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray. Oncogene, 2004. 23(6): p. 1291-9.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE