| 研究生: |
蘇脩聖 Su, Siou-Sheng |
|---|---|
| 論文名稱: |
多孔介質燃燒實驗探討不同氫氣火焰形態下熱傳機制對燃燒特性與氮氧化物生成之影響研究 Experimental Study of Combustion Characteristics and NO Formation Mechanism under Different Hydrogen Flame Modes with Heat Transfer Mechanisms in a Porous Media Combustor |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 共同指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 氫氣火焰 、多孔介質燃燒 、無因次溫度 、低氮氧化物排放 、熱回收率 |
| 外文關鍵詞: | Hydrogen flame, Porous media combustion, Dimensionless temperature, Low NO emission, Heat recovery rate |
| 相關次數: | 點閱:103 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的研究目的為探討多孔介質燃燒於不同氫氣火焰形態的燃燒特性與氮氧化物生成之研究。輸入熱量為162.5-812.5 W(氫氣流率1.0-5.0 L/min),當量比範圍介於0.2-0.5,無因次流速(V*)範圍介於1.0-11.19。多孔介質材料分別為碳化矽(OB-SiC)、三氧化二鋁(Al2O3)、與二氧化鋯(ZrO2),其孔洞分佈為60與30 PPI (Pores per inch)。本文中,多孔介質的排列分別為Type I-V。Type I-III的固體材質為OB-SiC、Al2O3與ZrO2,Type IV與V則是將固定上游材質為OB-SiC,下游則分別為Al2O3與ZrO2。透過實驗結果分析得知,氫氣火焰形態會受到無因次流速的質擴散力與多孔介質之熱擴散力的不同而有所變化。在多孔介質的孔洞分佈為60與30 PPI配置時(dm=0.2-0.4 mm),低當量比操作下因較低的熱擴散力,火焰穩駐於下游多孔介質表面形成表面燃燒。提高當量比後(=0.25-0.35),因增加熱擴散力(火焰速度與反應溫度)與固體介質的熱傳效應,提高多孔介質內的溫度進而使氫氣火焰轉換成內部燃燒。而當量比在0.4以上操作,過高的火焰速度與燃燒室溫度的提升會由內部燃燒轉變成錐形火焰。透過燃燒尾氣量測與化學反應計算探討氮氧化物生成分析可知。低當量比操作時反應溫度較低且火焰位於燃燒室的中下游處,燃燒尾氣在燃燒室內的滯流時間較短可有效的降低氮氧化物生成反應的時間;加上燃燒產物中自由基濃度(O、H與HO2)較低可減少氮氧化物生成機制所需之反應物,透過此兩種機制可抑制氮氧化物生成反應的進行。此外在表面燃燒時因反應溫度較低且滯留時間較短易造成氫氣轉換率下降;並且當火焰形態轉變成錐形火焰過程中,低熱擴散力的多孔介質會造成局部熄焰的現象,因反應不完全而造成低氫氣轉換率。在高輸入熱量與高當量比時,因反應溫度的提高,氫氣轉換率皆有明顯改善。無因次溫度的分析的探討中,可知不同火焰形態的熱傳機制會影響無因次溫度的高低。在表面與內部燃燒時,無因次溫度大多為0.75以上。輸入熱量為487.5 W以上時(=0.3),Type I配置可形成氫氣超焓火焰(*=1.01-1.04),Type II-V配置也有趨近於絕熱火焰溫度的表現(*=0.85-1.0)。綜合溫度分佈、燃燒產物分析與無因次溫度的討論分析,進而找出多孔介質燃燒器的最佳操作範圍。在輸入熱量為325 W以上,當量比介於0.25-0.3之間,具有高氫氣轉換率(>0.92)與熱回收率(*>0.75)並低氮氧化物生成(0-1 ppm)的操作特性,為本研究中多孔介質燃燒室的最佳操作範圍。利用上述結果,可做為高穩定性與低污染排放之小型燃燒器(<1.0 kW)設計上參考依據,以發展符合國際低污染排放法規下節能並高效率的燃燒技術。
This study investigated the heat recovery rates of hydrogen flame modes in porous medium combustion. The porous medium was oxide-bonded silicon carbide (OB-SiC), aluminum oxide (Al2O3) or zirconia (ZrO2) with 60 or 30 PPI. The results indicated that the reaction temperature of a flame mode was controlled by the equivalence ratio (Flame velocity), thermal load and solid medium thermal properties (k and CP). The operation region of the flame modes was controlled by the equivalence ratio and dimensionless velocity (V*). Under ultra-lean conditions (=0.2-0.25), the flame was blown out when the dimensionless velocity was above 4.5 for OB-SiC and Al2O3 settings. In contrast no blow out occurred for the ZrO2 setting and under a high equivalence ratio (>0.4), and the flame mode was a conical flame when the dimensionless velocity was above unity. The heat recovery mechanism of surface and interior combustion was based on the conduction and radiation of the porous medium. The dimensionless temperature (*) is defined as the ratio of the reaction temperature over the adiabatic flame temperature. When the dimensionless temperature was unity, the reaction temperature approached the adiabatic flame temperature. Under interior combustion, the maximum dimensionless temperature was 0.994 for the OB-SiC (=0.3) setting. Furthermore, the maximum dimensionless temperature was 0.942 for Al2O3 and 0.969 for ZrO2 under operation at =0.3. The heat recovery rate of hydrogen combustion under surface and interior combustion was thus higher than that of the conical flame mode.
1. G. Olah, A. Goeppert and G.K. Surya Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl Ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, Journal of Organic Chemistry, Vol. 74, pp. 487-498, 2009.
2. G.A. Olah, Beyond oil and gas: The methanol economy, Angewandte Chemie International Edition, Vol. 44, pp. 2636-2639, 2005.
3. S. Dunn, Hydrogen futures: toward a sustainable energy system, International Journal of Hydrogen Energy, Vol. 27, pp. 235-264, 2002.
4. S. Dunn, Hydrogen, history of, Encyclopedia of energy, Vol. 3, pp. 241-52, 2004.
5. T.N. Veziroglu, Quarter century of hydrogen movement 1974-2000, International Journal of Hydrogen Energy, Vol. 25, pp. 1143-1150, 2000.
6. M. Momirlan and T.N. Veziroglu, Current status of hydrogen energy, Renewable and sustainable energy reviews, Vol. 2, pp. 141-179, 2002.
7. S.A. Sherif, F. Barbir and T.N. Veziroglu, Wind energy and hydrogen economy-review of the technology, Solar Energy, Vol. 78, pp. 647-660, 2005.
8. A. Veziroglu and R. Macario, Fuel cell vehicles: State of the art with economic and environmental concerns, International Journal of Hydrogen Energy, Vol. 36, pp. 25-43, 2011.
9. G. Nicoletti, The hydrogen option for energy: a review of technical, environmental and economic aspects, International Journal of Hydrogen Energy, Vol. 20, pp. 759-765, 1995.
10. L. Barelli, G. Bidini, F. Gallorini and S. Servili, Hydrogen production through sorption-enhanced stream methane reforming and membrane technology: A review, Energy, Vol. 33, 554-570, 2008.
11. Y.H. Huang, S.F. Wang, A.P. Tsai and S. Kameoka, Catalysts prepared from copper-nickel ferrites for the stream reforming of methanol, Journal of Power Sources, Vol. 281, pp. 138-145, 2015.
12. W. Zhou, Q.H. Wang, J.R. Li, Y. Tang, Z.M. Huang, J.P. Zhang and Q. Lu, Hydrogen production from methanol steam reforming using porous copper fiber sintered felt with gradient porosity, International Journal of Hydrogen Energy, Vol. 40, pp. 244-255, 2015.
13. G. Avgouropoulos, A. Paxinou and S. Neophytides, In situ hydrogen utilization in an internal reforming methanol fuel cell, International Journal of Hydrogen Energy, Vol. 39, pp. 18103-18108, 2014.
14. S. Krummrich and J. Llabrés, Methanol reformer-The next milestone for fuel cell powered submarines, International Journal of Hydrogen Energy, Vol. 40, pp. 5482-5486, 2015.
15. R.F. Horng, M.P. Lai, H.H. Huang and Y.P. Chang, Reforming performance of a plasma-catalyst hybrid converter using low carbon fuels, Energy Conversion and Management, Vol. 50, pp. 2632-2637, 2009.
16. R.F. Horng, M.P. Lai, Y.P. Chang, J.P. Yur and S.F. Hsieh, Plasma-assisted catalyst reforming of propane and an assessment of its applicability on vehicles, International Journal of Hydrogen Energy, Vol. 34, pp. 6280-6289, 2009.
17. K.R. Hwang, C.B. Lee, S.W. Lee, S.K. Ryi and J.S. Park, Novel micro-channel methane reformer assisted combustion reaction for hydrogen production, International Journal of Hydrogen Energy, Vol. 36, pp. 473-481, 2011.
18. J.W. Lee, B. Hawkins, D.M. Day and D.C. Reicosky, Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration, Energy & Environmental Science, Vol. 3, pp. 1695-1705, 2010.
19. R.S. Prakasham, T. Sathish, P. Brahmaiah, Ch.S. Rao, R.S. Rao and P.J. Hobbs, Biohydrogen production from renewable agri-waste blend: Optimization using mixer design, International Journal of Hydrogen Energy, Vol. 34, pp. 6143-6148, 2009.
20. S.K. Maity, Opportunities, recent trends and challenges of integrated biorefinery: Part I, Renewable and Sustainable Energy Reviews, Vol. 3, pp. 1427-1445, 2015.
21. S.K. Maity, Opportunities, recent trends and challenges of integrated biorefinery: Part II, Renewable and Sustainable Energy Reviews, Vol. 43, pp. 1446-1466, 2015.
22. C. Yilmaz, M. Kanoglu, A. Bolatturk and M. Gadalla, Economics of hydrogen production and liquefaction by geothermal energy, International Journal of Hydrogen Energy, Vol. 37, pp. 2058-2069, 2012.
23. I. Dincer, Green methods for hydrogen production, International Journal of Hydrogen Energy, Vol. 37, pp. 1954-1971, 2012.
24. M. Tolga Balta, I. Dincer and A. Hepbasli, Geothermal-based hydrogen production using thermochemical and hybrid cycle: A review and analysis, International Journal of Energy Research, Vol. 34, pp. 757-775, 2010.
25. N. Sirosh, Fuels-Hydrogen storage, Encyclpoedia of Electrochemical Power Sources, pp.414-420, 2009.
26. H. Barthélémy, Hydrogen storage-Industrial prospectives, International Journal of Hydrogen Energy, Vol. 37, pp. 17364-17372, 2012.
27. S. Watanabe, Y. Tamura and J. Suzuki, The new facility for hydrogen and fuel cell vehicle safety evaluation, International Journal of Hydrogen Energy, Vol. 32, pp. 2154-2161, 2007.
28. S.M. Aceves, G.D. Berry, J. Nartinez-Frias and F. Espinosa-Loza, Vehicular storage of hydrogen in insulated pressure vessels, International Journal of Hydrogen Energy, Vol. 31, pp. 2274-2283, 2006.
29. K. Reddi, A. Elgowainy and E. Sutherland, Hydrogen refueling station compression and storage optimization with tube-trailer deliveries, International Journal of Hydrogen Energy, Vol. 39, pp. 19169-19181, 2014.
30. T. Aicher, B. Lenz, F. Gschnell, U. Groos, F. Federici, L. Caprile and L. Parodi, Fuel processors for fuel cell API application, Journal of power sources, Vol. 154, pp. 503-508, 2006.
31. A.S. Patil, T.G. Dubois, N. Sifer, E. Bostic, K. Gardner, M. Quah and C. Bolton, Portable fuel cell systems for America's army: technology transition to the field, Journal of power sources, Vol. 136, pp. 220-225, 2004.
32. T. Hübert, L. Boon Brett, G. Black and U. Banach, Hydrogen sensors - A review, Sensors and Actuators B: Chemical, Vol. 157, pp. 329-352, 2011.
33. G. Pekridis, K. Kalimeri, N. Kaklidis, E. Vakouftsi, E.F. Iliopoulou, C. Athanasiou and G.E. Marnellos, Study of the reverse water gas shift (RWGS) reaction over Pt in a solid oxide fuel cell (SOFC) operating under open and closed-circuit conditions, Catalysis Today, Vol. 127, pp. 337-346, 2007.
34. K. Tsujimura, The improvement of the efficiency of fuel cells against the elimination of harmful emissions from the internal combustion engines, Society of Automotive Engineering of Japan, Vol. 22, pp. 147-150, 2001.
35. J.H. Wee, Applications of proton exchange membrane fuel cell systems, Renewable & Sustainable Energy Reviews, Vol. 11, pp. 1720-1738, 2007.
36. O. Bitsche and G. Gutmann, Systems for hybrid cars, Journal of Power Sources, Vol. 127, pp. 8-15, 2004.
37. S. Verhelst and T. Wallmar, Hydrogen-fuel internal combustion engines, Progress in Energy and Combustion Science, Vol. 35, pp. 490-527, 2009.
38. C.M. White, R.R. Steeper and A.E. Lutz, The hydrogen-fueled internal combustion engine: a technical review, International Journal of Hydrogen Energy, Vol. 31, pp. 1292-1305, 2006.
39. G.A. Karim, Hydrogen as a spark ignition engine fuel, International Journal of Hydrogen Energy, Vol. 29, pp. 569-577, 2003.
40. N.N. Clark and F. Chen, Buses: ICE/Battery Hybrids. Encyclopedia of Electrochemical Power Source, pp. 203-218, 2009.
41. A.B. Negoro and A. Purwadi, Performance analysis on power train drive system of the 2012 Toyota camry hybrid, Procedia Technology, Vol. 11, pp. 1054-1064. 2013.
42. S.R. Turns, An Introduction to Combustion Concepts and Applications 2nd, McGraw-Hill Higher Education, Singapore, 2000.
43. D. Drysdale, An introduction to fire dynamics, John Wiley & Sons Ltd, New York, 1985.
44. J. Buckmaster, P. Clavin, A. Liñán, M. Matalon, N. Peters, C. Sivashinsky and F.A. Williams, Combustion and model, Proceedings of the Combustion Institute, Vol. 30, pp. 1-19, 2005.
45. I. Glassman and R.A. Yetter, Combustion 4th, Academic Press, San Diego, 2008.
46. S.R. Vosen, R. Greif and C.K. Westbrook, Unsteady heat transfer during laminar flame quenching, Symposium (International) on Combustion, Vol. 20, pp. 75-83, 1985.
47. W.M. Huang, S.R. Vosen and R. Greif, Heat transfer during laminar flame quenching: effect of fuels, Symposium (International) on Combustion, Vol. 21, pp. 1853-1860, 1988.
48. V. Kurdyumov, E. Fernández-Tarrazo, J.M. Truffaut, J. Quinard, A. Wangher and G. Searby, Experimental and numerical study of premixed flame flashback, Proceedings of the Combustion Institute, Vol. 31, pp. 1275-1282, 2007.
49. J.D. Regele, E. Knudsen, H. Pitsch and G. Blanquart, A two-equation model for non-unity Lewis number differential diffusion in lean premixed laminar flames, Combustion and Flame, Vol. 160, pp. 240-250, 2013.
50. T.K. Mishra, A. Datta and A. Mukhopadhyay, Comparison of the structures of methane-air and propane-air premixes flame, Fuel, Vol. 82, 1254-1263, 2006.
51. T.K. Mishra, A. Datta and A. Mukhopadhyay, Concentration of selected hydrocarbons in methane/air partially premixed flames using gas chromatography, International Journal of Thermal Sciences, Vol. 44, pp. 1078-1089, 2005.
52. M. Emadi, D. Karkow, T. Salameh, A. Gohil and A. Ratner, Flame structure changes resulting from hydrogen-enrichment and pressurization for low-swirl premixed methane-air flames, International Journal of Hydrogen Energy, Vol. 37, pp. 10397-10404, 2012.
53. V.D. Sarli and A.D. Benedetto, Effects of non-equidiffusion on unsteady propagation of hydrogen-enriched methane/air premixed flames, International Journal of Hydrogen Energy, Vol. 38, pp. 7510-7518, 2013.
54. V.D. Sarli, A.D. Benedetto, E.J. Long and G.K. Hargrave, Time-resolved particles image velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures, International Journal of Hydrogen Energy, Vol. 37, pp. 16201-16213, 2012.
55. F. Cozzi and A. Coghe, Behavior of hydrogen-enriched non-premixed swirled natural gas flames, International Journal of Hydrogen Energy, Vol. 31, pp. 669-677, 2006.
56. S.H. Park, K.M. Lee and C.H. Hwang, Effects of hydrogen addition on soot formation and oxidation in laminar premixed C2H2/air flames, International Journal of Hydrogen Energy, Vol. 36, pp. 9304-9311, 2011.
57. K.A. Franics, R. Sreenivasan and V. Raghavan, Investigation of structures and reaction zones of methane-hydrogen laminar jet diffusion flames, International Journal of Hydrogen Energy, Vol. 36, pp. 11183-11194, 2011.
58. H.S. Kim, V.K. Arghode and A.K. Gupta, Flame characteristics of hydrogen-enriched methane-air premixed swirling flame, International Journal of Hydrogen Energy, Vol. 34, pp. 1063-1073, 2009.
59. H.S. Zhen, C.S. Cheung, C.W. Leung and Y.S. Choy, Effects of hydrogen concentration on the emission and heat transfer of a premixed LPG- hydrogen flame, International Journal of Hydrogen Energy, Vol. 37, pp. 6097-6105, 2012.
60. Y.S. Zhang, J.H. Zhou, W.J. Yang, M.S. Liu and K.F. Chen, Effects of hydrogen addition on methane catalytic combustion in microtube, International Journal of Hydrogen Energy, Vol. 32, pp. 1286-1293, 2007.
61. S. Noda, J. Inohae and Z.S. Saldi, NOx emission characteristics of confines jet nonpremixed flames, Proceedings of the Combustion Institute, Vol. 31, pp. 1625-1632, 2007.
62. K. Safer, F. Tabet, A. Ouadha, M. Safer and I. Gökalp, Combustion characteristics of hydrogen-rich alternative fuels in count-flow diffusion flame configuration, Energy Conversion and Management, Vol. 74, pp. 269-278, 2013.
63. N. Weiland, R.H. Chen and P. Strakey, Effects of coaxial air on nitrogen-diluted hydrogen jet diffusion flame length and NOx emission, Proceedings of the Combustion Institute, Vol. 33, pp. 2983-2989, 2011.
64. J.S. Oh, P.W. Heo and Y.B. Yoon, Acoustic excitation effect on NOx reduction and flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air, International Journal of Hydrogen Energy, Vol. 34, pp. 7851-7861, 2009.
65. J. Park, K.M. Lee and E.J. Lee, Effects of CO2 addition on flame structure in counterflow diffusion flame H2/CO2/N2 fuel, International Journal of Energy Research, Vol. 25, pp. 469-485, 2001.
66. D.H. Um, J.M. Joo, S. Lee and O.C. Kwon, Combustion stability limits and NOx emissions of nonpremixed ammonia-subsituted hydrogen-air flames, International Journal of Hydrogen Energy, Vol. 8, pp. 14854-14865, 2011.
67. M. Ilbas, A.P. Crayford, İ. Yilmaz, P.J. Bowen and N. Syred, Laminar-burning velocities of hydrogen-air and hydrogen-methane-air : An experimental study, International Journal of Hydrogen Energy, Vol. 31, pp. 1768-1779, 2006.
68. A. Brockhinke, P. Andresen and K. Kohse-Hoinghaus, Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame, Applied Physics B Lasers and Optics, Vol. 61, pp. 533-545, 1995.
69. S.A. Ciatti, B. Bihari and T. Wallner, Establishing combustion temperature in a hydrogen-fuelled engine using spectroscopic measurements, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221, pp. 698-712, 2007.
70. R.W. Schefer, W.D. Kulatilaka, B.D. Patterson and T.B. Settersten, Visible emission of hydrogen flames, Combustion and flame, Vol. 156, pp. 1234-1241, 2009.
71. J. Pareja, H.J. Burbano, A. Amell and J. Carvajal, Laminar burning velocities and flame stability analysis of hydrogen/air premixed flames at low pressure, International Journal of Hydrogen Energy, Vol. 36, pp. 6317-6324, 2011.
72. A.E. Dahoe, Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions, Journal of Loss Prevention in Process Institutes, Vol. 18, pp. 152-166, 2005.
73. D. Böker and D. Brüggemann, Advancing lean combustion of hydrogen-air mixtures by laser-induced spark ignition, International Journal of Hydrogen Energy, Vol. 36, pp. 14759-14767, 2011.
74. T. Wallner, H. Lohse-Busch, S. Gurski, M. Duoba, W. Thiel, D. Martin and T. Korn, Fuel economy and emission of BMW hydrogen 7 mono-fuel demonstration vehicles, International Journal of Hydrogen Energy, Vol. 33, pp. 7607-7618, 2008.
75. F. Toja-Silva, A novel water heater using injected hydrogen combustion exhaust, Energy and Building, Vol. 43, pp. 2320-2328, 2011.
76. Y. Ju and K. Maruta, Microscale combustion: Technology develop and fundamental research, Progress in Energy and combustion Science, Vol. 37, pp.1-47, 2011.
77. F.J. Weinberg, Combustion temperature; The future?, Nature, Vol. 233, pp. 239-241, 1971.
78. S.A. Lloyd and F.J. Weinberg, A burner for mixtures of very low heat content, Nature, Vol. 251, pp. 47-49, 1974.
79. T.L. Marbach and A.K. Agrawal, Experimental study of surface and interior combustion using composite porous inert media, Journal of Engineering for Gas Turbines and Power, Vol. 127, pp. 307-313, 2005.
80. M.M. Kamal and A.A. Mohamad, Combustion in a porous, Proceedings of the institution of mechanical engineers, Vol. 220, pp. 487-509, 2006.
81. M. Abdul Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad and M.K. Abdullah, Applications of porous media combustion technology-A review, Applied Energy, Vol. 86, pp. 1365-1375, 2009.
82. M. Abdul Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, R.M.N. Muhad and M.K. Abdullah, Combustion in porous media and its applications- A comprehensive survey, Journal of Environmental Management, Vol. 90, pp. 2287-2312, 2009.
83. Z. Al-Hamamre and A. Al-Zoubi, The use of inert porous media based reactors for hydrogen production, International Journal of Hydrogen Energy, Vol. 35, pp. 1971-1986, 2010.
84. D. Trimis and K. Wawarzinek, Flame stabilization of highly diffusive gas mixtures in porous inert media, Journal of Computational and Applied Mechanics, Vol. 5, pp. 367-381, 2004.
85. V.S. Babkin, A.A. Korzhavin and V.A. Bunev, Propagation of premixed gaseous explosion flames in porous media, Combustion and Flame, Vol. 87, pp. 182-190, 1991.
86. A.A.M. Oliveira and M. Kaviany, Nonequilibrium in the transport of heat and reactants in combustion in porous media, Progress in Energy and combustion Science, Vol. 27, pp. 523-545, 2001.
87. A.R. Khatmi F, B. Safavisohi and E. Sharbati, Porosity and permeability effects on centerline temperature distributions, peak flame temperature, flame structure, and prefeating mechanism for combustion in porous media, Journal of Energy Resources Technology, Vol. 129, pp. 54-65, 2007.
88. J.R. Howell, M.J. Hall and J.L. Ellzey, Combustion of hydrocarbon fuels within porous inert media, Progress in Energy and Combustion Science, Vol. 22, pp. 121-145, 1996.
89. K. Xu, M.H. Liu and P.H. Zhao, Stability of lean combustion in mini-scale porous media combustor with heat recuperation, Chemical Engineering and Processing, Vol. 50, pp. 608-613, 2011.
90. T. Tomimura, K. Hamano, Y. Honda and R. Echigo, Experimental study in multi-layered type of gas-to-gas heat exchanger using porous media, International Journal of Heat and Mass Transfer, Vol. 47, pp. 4615-4623, 2004.
91. M.M. Kamal, and A.A. Mohamad, Enhanced radiation output from foam burners operating with a nonpremixed flame, Combustion and Flame, Vol. 140, pp. 233-248, 2005.
92. K.V. Dobrego, N.N. Gnesdilov, S.H. Lee and H.K. Choi, Methane partial oxidation reverse flow reactor scale up and optimization, International Journal of Hydrogen Energy, Vol. 33, pp. 5501-5509, 2008.
93. K.V. Dobrego, N.N. Gnesdilov, S.H. Lee and H.K. Choi, Partial oxidation of methane in a reverse flow porous media reactor. Water admixing optimization, International Journal of Hydrogen Energy, Vol. 33, pp. 5535-5544, 2008.
94. M.P. Lai, W.H. Lai, R.F. Horng, C.Y. Chen, W.C. Chiu, S.S. Su and Y.M. Chang, Experimental study on the performance of oxidative dry reforming from simulated biogas, Energy Procedia, Vol. 29, pp. 225-233, 2012.
95. R.S. Dhamrat and J.L. Ellzey, Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor, Combustion and Flame, Vol. 144, pp. 698-709, 2006.
96. V. Kambiz, Handbook of porous media 2nd ed, Taylor & Francis Group LLC, Boca Raton, pp. 607-644, 2005.
97. J.P. Bingue, A.V. Saveliev, A.A. Fridman and L.A. Kenndy, Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide, International Journal of Hydrogen energy, Vol. 27, pp. 643-649, 2002.
98. J.P. Bingue, A.V. Saveliev, A.A. Fridman and L.A. Kenndy, Hydrogen sulfide filtration combustion : comparison of theory and experiment, Experimental Thermal and Fluid Science, Vol. 409, pp. 409-415, 2002.
99. R.W. Francisco Jr, F. Rua, M. Costa, R.C. Catapan and A.A.M. Oliveira, On the Combustion of Hydrogen-rich gaseous fuels with low calorific value in a porous burner, Energy Fuels, Vol. 24, pp. 880-887, 2010.
100. S. Voss, M.A.A. Mendes, J.M.C. Pereira, S. Ray, J.C.F. Pereira and D. Trimis, Investigation on the thermal flame thickness for lean premixed combustion of low calorific H2/CO mixtures within porous inert media, Proceedings of the Combustion Institute, Vol. 34, pp. 3335-3342, 2013.
101. R.C. Catapan, A.A.M. Oliveira and M. Costa, Non-uniform velocity profile mechanism for flame stabilization in porous radiant burner, Experimental Thermal and Fluid Science, Vol. 35, pp. 172-179, 2011.
102. S.S. Su, S.J. Hwang and W.H. Lai, On a porous medium combustor for hydrogen flame stabilization and operation, International Journal of Hydrogen Energy, Vol. 29, pp. 21307-21316, 2014.
103. S. Voss, R. Steinbrück, M. Kautz, E. Schieβwohl, M. Arendt, J.T. Felde, J. Volkert and D. Trimis, Premixed hydrogen-air combustion system for fuel cell systems, International Journal of Hydrogen Energy, Vol. 36, pp. 3697-3703, 2011.
104. W.Y. Choi, S.J. Kwon and H.D. Shin, Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor, International Journal of Hydrogen Energy, Vol. 33, pp. 2400-2408, 2008.
105. http://www.oxy-hydrogen.com/
106. J.B. Heywood, Internal combustion engine fundamentals, McGraw-Hill Higher Education, Singapore, 1988.
107. J. Charoensuk and A. Lapirattankun, On flame stability, temperature distribution and burnout of air-staged porous media combustor firing LPG with different porosity and excess air, Applied Thermal Engineering, Vol. 31, pp. 3125-3141, 2001.
108. X. Fu, R. Viskanta and J.P. Gore, Measurement and correlation of volumetric heat transfer coefficients of cellular ceramic, Experimental Thermal and Fluid Science, Vol. 17, pp. 285-293, 1998.
109. F.P. Incropera and D.P. DeWitt, Fundamentals of heat and mass transfer 4th ed, John Wiley & Sons, New York, 1996.
110. S. K. Aggarwal and A. M. Briones, Hydrogen combustion and emissions in a sustainable energy future, In M. Lackner, F. Winter and A. K. Agarwal, Handbook of combustion, Vol. 3, pp. 165-212, Gaseous and liquid fuels chapter 7, Weinheim, Wiley-VCH, 2010.