簡易檢索 / 詳目顯示

研究生: 林永璨
Lin, Yung-Tsan
論文名稱: 以水溶性環保製程製備超疏水表面
Fabricating Super-hydrophobic Surfaces via Green Process with a Filler Water Dissolved
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 92
中文關鍵詞: 水溶性顆粒法連花效應超疏水PDMS壓克力回收聚丙烯低成本環保
外文關鍵詞: Water-dissolved, lotus effect, super-hydrophobic, PDMS, PMMA, recycled polypropylene, low cost, environmentally friendly
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們用PDMS、壓克力、回收聚丙烯展示了一個簡單環保且低成本的水溶性顆粒製程來製造超疏水表面。這結果顯示了在蓮花效應的情況下(CA>150° and SA<10°),不同的材料對應不同的尺寸的大小。
    在初步的實驗中,利用PDMS透過不同尺度的填充材料來製備超疏水表面,而形成微米的肋骨狀和微米的石頭狀的突起物,這個方法雖然解決了大面積和成本的問題,但是過程中還是要使用到硫酸來做修飾,為了避免使用化學藥品而進一步的改進方法。第二個實驗利用水溶性顆粒被壓力壓入暫時溶解的壓克力中,待溶劑揮發掉以後用水清洗表面而生成很多微米結構,這樣的製程不需要昂貴的設備就可以製造出大面積的超疏水表面,而且水可以回收利用烤乾以後形成新的鹽顆粒,在沒有鍍膜以前的接觸角可以達到150度但是滑動角大於10度,在60℃的鍍膜以後,滑動角可以小於10度而達到超疏水,但是也因為這個改良的方法依然要使用少量的化學藥品來暫時溶解基材,而且也需要透過額外的鍍膜才能有效的達到超疏水標準,因此再透過此一水溶性方法往下延伸去找出可以不需要化學藥品而達到環保的製程。後來我們使用回收的聚丙烯(rPP)和海鹽,在rPP表面上形成孔洞,A等級沒有鍍膜情況下可以達到超疏水的現象,等級B在標準的邊緣,而又將A等級成功地製作於曲面上,在這個製程中,完全沒有用到有害的化學藥品,所以是一個兼具環保,低成本且可以施作於3D形狀結構物上的製程技術,而這是這個實驗中最能達到環保且低成本的製程。最後透過這個方法製作超疏水的表面,將PDMS澆置在rPP的模子上,然後脫模,就可以得到半透明的超疏水膜,在可見光的透光率部分,等級B~D約為75~80%,而等級A約為85~90%,而使用綠色的雷射筆測是可以發現光穿透以後會有散射的情況發生,大約是0.5cm變成7.7cm的直徑。

    In this study, we presented a facile environmentally friendly and low cost water-dissolved filler (salt grain) process for fabricating large area super-hydrophobic surfaces using poly(dimethylsiloxane) (PDMS), acrylic, and recycled polypropylene (rPP, as a duplication template). The results show that different materials with different grain size levels can exhibit the lotus effect of CA>150° and SA<10°.
    In the beginning, different levels of salt grain sizes were used to examine the filler size effect on fabricating the super-hydrophobic surfaces and on the hydrophobic mechanism involved. The super-hydrophobic characteristic is achieved mainly by the large micro rib-like structures, small micro rock-like bumps, and textures on the bump due to the fillers.
    The above method was successful but needed using sulfur acid chemical (H2SO4) to decorate the surface during the fabrication process, and therefore was not environmentally friendly. Hence, the next step was to avoid chemicals as much as possible by pressing the salt grain fillers into acrylic by pressure and a solvent. Then the fillers were dissolved in water by rinsing to create micro-scale structures on the acrylic. The process used no costly equipment, and was capable of making large surfaces while salt grains could be recycled after rinsing by heating. Most of the fabricated surfaces without any coating have contact angles greater than 150° but slide angles larger than 10°. After coating with PDMS gas at 60℃, all the fabricated surfaces become super-hydrophobic with slide angles less than 10°. However, this process also needed some chemical to temporarily dissolve the base material, and coating by the PDMS gas for the lotus effect. Thus, a green and low process was explored.
    For the green process, we used recycled polypropylene (rPP) and also salt grains to fabricate curved super-hydrophobic surfaces. Surface cavities on rPP were formed by salt fillers. The surface made by grain size level A (without coating) reaches the super-hydrophobic condition of CA>150° and SA<10°; whereas, that by grain size level B marginally fulfills the criteria. Thus, grain size level A was further used to fabricate curved super-hydrophobic surfaces. In this successful fabricating process, no harmful chemicals were used while rPP was selected for the green purpose. That is, the process is environmentally friendly, low cost, and flexible for various three dimensional surface shapes. This process reaches the low cost green goal.
    The green rPP process was further developed to make transparent surfaces. By casting the colloid of PDMS on a template made of rPP for structural duplication. Translucent super-hydrophobic surfaces were fabricated greenly without using any complicated method. The surface structure of the rPP template was made by water dissolved salt grain fillers using hot embossing. The measured percentages of light transmittance are about 75~80% for grain size levels B, C and D, and about 85~90% for size level A, for the visible wavelength from 400 to 800 nm. Moreover, a green laser light can be diffused from a spot size of 0.5 cm to about 7.7 cm in diameter and the related glaring is also eliminated.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation of this work 2 Chapter 2 Literature Review 3 2.1 Lithography 3 2.2 Chemical vapor deposition (CVD) 4 2.3 Sol-gel approach 5 2.4 Electrochemical reaction and deposition 6 2.5 Etching 7 2.6 Imprinting and replication 8 2.7 Layer-by-layer (LBL), coating and colloidal assembly 10 2.8 Mixing process and other methods 11 Chapter 3 Theory 14 3.1 Basic theory 14 3.1.1 Wetting behavior 14 3.1.2 Advancing angle ( ), receding angle ( ) and sliding Angle (α) 15 3.2 Models 17 3.2.1 Wenzel model 17 3.2.2 Cassie Baxter model 17 3.2.3 Transition state 19 3.2.4 The new definition of hydrophobic and hydrophilic 19 3.3 Effect of Lotus and petal effect 20 3.3.1 Lotus effect 20 3.3.2 Petal effect 21 3.4 Low surface energy material 21 Chapter 4 Experimental Methods 23 4.1 Materials preparing 23 4.1.1 Poly(dimethylsiloxane) (PDMS) 23 4.1.2 Poly(methyl methacrylate) (acrylic) 24 4.1.3 Recycled polypropylene (rPP) 25 4.1.4 Filler (salt powder) preparing 25 4.1.5 Measurements 27 4.2 Process 28 4.2.1 Fabricating process of PDMS 28 4.2.2 Fabricating process of acrylic 29 4.2.3 Fabricating process of recycled polypropylene (rPP) 31 4.2.4 Fabricating process of transparent PDMS film from rPP mold 33 Chapter 5 Results and Discussion 35 5.1 PDMS 35 5.1.1 Surface feature 41 5.1.2 Other tests 43 5.2 Acrylic 45 5.2.1 Other tests 51 5.3 rPP 52 5.3.1 Other tests 59 5.4 Transparent PDMS film 60 5.4.1 Light transmittance characteristics 63 5.4.2 Other tests 65 5.5. Comparison 67 5.5.1 Cost, CA, and SA 67 5.5.2 Material Effects 68 Chapter 6 Conclusions and suggestions 74 6.1 Conclusions 74 6.2 Suggestions 74 Reference 76

    [1] J. Loeb. Hydrophilic and hydrophobic colloids and the influence of electrolytes on membrane potentials and cataphoretic potentials. Journal of General Physiology; 6:307-328 (1924). doi: 10.1085/jgp.6.3.307
    [2] R.N. Wenzel. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry; 28:988-994 (1936). doi: 10.1021/ie50320a024
    [3] A.B.D. Cassie, S. Baxter. Wettability of porous surfaces. Transactions of the Faraday Society; 40:0546-0550 (1944). doi: 10.1039/tf9444000546
    [4] S. Baxter, S.J. Gregg, R.I. Razouk, W. Hirst, N.K. Adam, D.J. Crisp, A.B.D. Cassie, R. Shuttleworth, C. Kemball, W.W. Barkas, K.J. Nieuwenhuis, R.K. Schofield, A.G. Foster, R.L. Bond, D.K. Ashpole, F.A.P. Maggs, I.W. Wark, D.H. Bangham, M. Joly, M. Griffith, E.M. Dresel, J.F. Duncan, S.M. Neale, R.M. Barrer, D.I.W. Atkinson, A. Klinkenberg, J.F. Pearse, H.C. Brinkman, E. Ernst, G.S. Hartley, K.G. Denbigh, E.C. Childs. THE THERMO-OSMOSIS OF LIQUIDS THROUGH POROUS MATERIALS - DISCUSSION. Discussions of the Faraday Society; 3:94-& (1948). doi: 10.1039/df9480300094
    [5] W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta; 202:1-8 (1997). doi: 10.1007/s004250050096
    [6] T.L. Sun, L. Feng, X.F. Gao, L. Jiang. Bioinspired surfaces with special wettability (vol 38, pg 644, 2005). Accounts of Chemical Research; 39:487-487 (2006). doi: 10.1021/ar068150n
    [7] M. Manaargadoo-Catin, A. Ali-Cherif, J.L. Pougnas, C. Perrin. Hemolysis by surfactants - A review. Advances in Colloid and Interface Science; 228:1-16 (2016). doi: 10.1016/j.cis.2015.10.011
    [8] T. Dey, D. Naughton. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. Journal of Sol-Gel Science and Technology; 77:1-27 (2016). doi: 10.1007/s10971-015-3879-x
    [9] A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott. The dream of staying clean: Lotus and biomimetic surfaces. Bioinspiration & Biomimetics; 2:S126-S134 (2007). doi: 10.1088/1748-3182/2/4/s02
    [10] Z. Yuan, X. Wang, J. Bin, C. Peng, S. Xing, M. Wang, J. Xiao, J. Zeng, Y. Xie, X. Xiao, X. Fu, H. Gong, D. Zhao. A novel fabrication of a superhydrophobic surface with highly similar hierarchical structure of the lotus leaf on a copper sheet. Applied Surface Science; 285:205-210 (2013). doi: 10.1016/j.apsusc.2013.08.037
    [11] H. Yang, F. Liang, Y. Chen, Q. Wang, X. Qu, Z. Yang. Lotus leaf inspired robust superhydrophobic coating from strawberry-like Janus particles. Npg Asia Materials; 7:(2015). doi: 10.1038/am.2015.33
    [12] D. Losic. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces. Journal of the Serbian Chemical Society; 73:1123-1135 (2008). doi: 10.2298/jsc0811123l
    [13] K. Koch, A.J. Schulte, A. Fischer, S.N. Gorb, W. Barthlott. A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces. Bioinspiration & Biomimetics; 3:10 (2008). doi: 10.1088/1748-3182/3/4/046002
    [14] J. Shi, N.M. Alves, J.F. Mano. Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspiration & Biomimetics; 3:6 (2008). doi: 10.1088/1748-3182/3/3/034003
    [15] M.S. Lehnert, D. Monaenkova, T. Andrukh, C.E. Beard, P.H. Adler, K.G. Kornev. Hydrophobic - hydrophilic dichotomy of the butterfly proboscis. Journal of the Royal Society Interface; 10:10 (2013). doi: 10.1098/rsif.2013.0336
    [16] Y.S. Song, M. Sitti. Surface-tension-driven biologically inspired water strider robots: Theory and experiments. Ieee Transactions on Robotics; 23:578-589 (2007). doi: 10.1109/tro.2007.895075
    [17] C.M. Eliason, M.D. Shawkey. Decreased hydrophobicity of iridescent feathers: a potential cost of shiny plumage. Journal of Experimental Biology; 214:2157-2163 (2011). doi: 10.1242/jeb.055822
    [18] G.N. Kostina, V.E. Sokolov, E.V. Romanenko, O.F. Chernova, T.N. Sidorova, V.A. Tarchevskaya. Hydrophobic capacity of feather elements in penguins (Aves, Sphenisciformes). Zoologichesky Zhurnal; 75:237-248 (1996). doi:
    [19] H. Lee, B. Bhushan. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. Journal of Colloid and Interface Science; 372:231-238 (2012). doi: 10.1016/j.jcis.2012.01.020
    [20] S. Ma, Q. Ye, X. Pei, D. Wang, F. Zhou. Antifouling on Gecko's Feet Inspired Fibrillar Surfaces: Evolving from Land to Marine and from Liquid Repellency to Algae Resistance. Advanced Materials Interfaces; 2:(2015). doi: 10.1002/admi.201500257
    [21] B. Soltannia, D. Sameoto. Strong, Reversible Underwater Adhesion via Gecko-Inspired Hydrophobic Fibers. Acs Applied Materials & Interfaces; 6:21995-22003 (2014). doi: 10.1021/am5075375
    [22] M. Nosonovsky, B. Bhushan. Roughness optimization for biomimetic superhydrophobic surfaces. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems; 11:535-549 (2005). doi: 10.1007/s00542-005-0602-9
    [23] F. Gentile, L. Ferrara, M. Villani, M. Bettelli, S. Iannotta, A. Zappettini, M. Cesarelli, E. Di Fabrizio, N. Coppede. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures. Scientific Reports; 6:(2016). doi: 10.1038/srep18992
    [24] doi: 10.1116/1.3483467
    [25] B. Farshchian, S. Park, J. Choi, A. Amirsadeghi, J. Lee, S. Park. 3D nanomolding for lab-on-a-chip applications. Lab on a Chip; 12:4764-4771 (2012). doi: 10.1039/c2lc40572e
    [26] G. Londe, A. Wesser, H.J. Cho, L. Zhai, A. Chunder, S. Subbarao, A passive microfluidic valve using superhydrophobic/hydrophilic nanostructures for lab-on-a-chip (LOC) systems, 2007.
    [27] F.X. Zhang, J. Chan, H.Y. Low. Biomimetic, hierarchical structures on polymer surfaces by sequential imprinting. Applied Surface Science; 254:2975-2979 (2008). doi: 10.1016/j.apsusc.2007.10.061
    [28] A.J. Keefe, N.D. Brault, S. Jiang. Suppressing Surface Reconstruction of Superhydrophobic PDMS Using a Superhydrophilic Zwitterionic Polymer. Biomacromolecules; 13:1683-1687 (2012). doi: 10.1021/bm300399s
    [29] H.S. Salapare, III, B.A.T. Suarez, H.S.O. Cosinero, M.Y. Bacaoco, H.J. Ramos. Irradiation of poly(tetrafluoroethylene) surfaces by CF4 plasma to achieve robust superhydrophobic and enhanced oleophilic properties for biological applications. Materials Science & Engineering C-Materials for Biological Applications; 46:270-275 (2015). doi: 10.1016/j.msec.2014.10.050
    [30] B.K. Paul, N. Ghosh, S. Mukherjee. Direct insight into the nonclassical hydrophobic effect in bile salt: beta-cyclodextrin interaction: role of hydrophobicity in governing the prototropism of a biological photosensitizer. Rsc Advances; 6:9984-9993 (2016). doi: 10.1039/c5ra27050b
    [31] F. Poncin-Epaillard, J.M. Herry, P. Marmey, G. Legeay, D. Debarnot, M.N. Bellon-Fontaine. Elaboration of highly hydrophobic polymeric surface - a potential strategy to reduce the adhesion of pathogenic bacteria? Materials Science & Engineering C-Materials for Biological Applications; 33:1152-1161 (2013). doi: 10.1016/j.msec.2012.12.020
    [32] Z.J. Liang, Z.W. Zhaob, T.Y. Sun, W.X. Shi, F.Y. Cui. Adsorption of quinolone antibiotics in spherical mesoporous silica: Effects of the retained template and its alkyl chain length. Journal of Hazardous Materials; 305:8-14 (2016). doi: 10.1016/j.jhazmat.2015.11.033
    [33] X.X. Zhang, L. Wang, E. Levanen. Superhydrophobic surfaces for the reduction of bacterial adhesion. Rsc Advances; 3:12003-12020 (2013). doi: 10.1039/c3ra40497h
    [34] L.A.M. Carrascosa, D.S. Facio, M.J. Mosquera. Producing superhydrophobic roof tiles. Nanotechnology; 27:13 (2016). doi: 10.1088/0957-4484/27/9/095604
    [35] L.-B. Lv, T.-L. Cui, B. Zhang, H.-H. Wang, X.-H. Li, J.-S. Chen. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces. Angewandte Chemie-International Edition; 54:15165-15169 (2015). doi: 10.1002/anie.201507074
    [36] K.P. Rao, M. Higuchi, K. Sumida, S. Furukawa, J. Duan, S. Kitagawa. Design of Superhydrophobic Porous Coordination Polymers through the Introduction of External Surface Corrugation by the Use of an Aromatic Hydrocarbon Building Unit. Angewandte Chemie-International Edition; 53:8225-8230 (2014). doi: 10.1002/anie.201404306
    [37] Y. Li, X. Men, X. Zhu, B. Ge, F. Chu, Z. Zhang. One-step spraying to fabricate nonfluorinated superhydrophobic coatings with high transparency. Journal of Materials Science; 51:2411-2419 (2016). doi: 10.1007/s10853-015-9552-5
    [38] K. Seo, M. Kim, S. Seok, D.H. Kim. Transparent superhydrophobic surface by silicone oil combustion. Colloids and Surfaces a-Physicochemical and Engineering Aspects; 492:110-118 (2016). doi: 10.1016/j.colsurfa.2015.12.022
    [39] S.A. Mahadik, F. Pedraza, R.S. Vhatkar. Silica based superhydrophobic coating for long-term industrial and domestic applications. Journal of Alloys and Compounds; 663:487-493 (2016). doi: 10.1016/j.jallcom.2015.12.016
    [40] M. Ferrari, A. Benedetti. Superhydrophobic surfaces for applications in seawater. Advances in Colloid and Interface Science; 222:291-304 (2015). doi: 10.1016/j.cis.2015.01.005
    [41] J. Guo, F.C. Yang, Z.G. Guo. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay. Journal of Colloid and Interface Science; 466:36-43 (2016). doi: 10.1016/j.jcis.2015.12.015
    [42] R. Du, X. Gao, Q.L. Feng, Q.C. Zhao, P. Li, S.B. Deng, L.R. Shi, J. Zhang. Microscopic Dimensions Engineering: Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil/Water Separation. Advanced Materials; 28:936-942 (2016). doi: 10.1002/adma.201504542
    [43] L. Zhang, L.L. Li, Z.M. Dang. Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation. Journal of Colloid and Interface Science; 463:266-271 (2016). doi: 10.1016/j.jcis.2015.10.065
    [44] Y. Rahmawan, L. Kwang-Ryeol, M. Myoung-Woon, S. Kahp-Yang, 3-D hierarchical wrinkled micro-pillars for anti-cells proliferation surfaces, 2011.
    [45] C.-H. Chang, M.-H. Hsu, C.-J. Weng, W.-I. Hung, T.-L. Chuang, K.-C. Chang, C.-W. Peng, Y.-C. Yen, J.-M. Yeh. 3D-bioprinting approach to fabricate superhydrophobic epoxy/organophilic clay as an advanced anticorrosive coating with the synergistic effect of superhydrophobicity and gas barrier properties. Journal of Materials Chemistry A; 1:13869-13877 (2013). doi: 10.1039/c3ta12754k
    [46] (!!! INVALID CITATION !!!). doi:
    [47] T.J. Yao, C.X. Wang, Q. Lin, X. Li, X.L. Chen, J. Wu, J.H. Zhang, K. Yu, B. Yang. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles. Nanotechnology; 20:(2009). doi: 10.1088/0957-4484/20/6/065304
    [48] B. Liu, Y.N. He, Y. Fan, X.G. Wang. Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromolecular Rapid Communications; 27:1859-1864 (2006). doi: 10.1002/marc.200600492
    [49] R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir; 21:956-961 (2005). doi: 10.1021/la0401011
    [50] X.J. Huang, D.H. Kim, M. Im, J.H. Lee, J.B. Yoon, Y.K. Choi. "Lock-and-Key" Geometry Effect of Patterned Surfaces: Wettability and Switching of Adhesive Force. Small; 5:90-94 (2009). doi: 10.1002/smll.200800649
    [51] D. Wu, Y.-B. Zhao, S.-Z. Wu, Y.-F. Liu, H. Zhang, S. Zhao, J. Feng, Q.-D. Chen, D.-G. Ma, H.-B. Sun. Simultaneous efficiency enhancement and self-cleaning effect of white organic light-emitting devices by flexible antireflective films. Optics Letters; 36:2635-2637 (2011). doi:
    [52] M. Im, H. Im, J.H. Lee, J.B. Yoon, Y.K. Choi. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter; 6:1401-1404 (2010). doi: 10.1039/b925970h
    [53] W. Quandai, S. Yixiong, W. Li, X. Jiming. Fabrication of template with dual-scale structures based on glass wet etching and its application in hydrophobic surface preparation. Micro & Nano Letters; 9:340-344 (2014). doi: 10.1049/mnl.2014.0112
    [54] J.H. Ko, J. Kim, J. Hong, Y. Yoo, Y. Lee, T.L. Jin, H.C. Park, N.S. Goo, D. Byun. Micro/nanofabrication for a realistic beetle wing with a superhydrophobic surface. Bioinspiration & Biomimetics; 7:8 (2012). doi: 10.1088/1748-3182/7/1/016011
    [55] H. Notsu, W. Kubo, I. Shitanda, T. Tatsuma. Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography. Journal of Materials Chemistry; 15:1523-1527 (2005). doi: 10.1039/b418884e
    [56] E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Letters; 5:2097-2103 (2005). doi: 10.1021/nl051435t
    [57] A. Accardo, F. Gentile, F. Mecarini, F. De Angelis, M. Bughammer, E. Di Fabrizio, C. Riekel. In Situ X-ray Scattering Studies of Protein Solution Droplets Drying on Micro- and Nanopatterned Superhydrophobic PMMA Surfaces. Langmuir; 26:15057-15064 (2010). doi: 10.1021/la102958w
    [58] L.B. Zhu, Y.H. Xiu, J.W. Xu, P.A. Tamirisa, D.W. Hess, C.P. Wong. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir; 21:11208-11212 (2005). doi: 10.1021/la051410+
    [59] K. Ellinas, A. Smyrnakis, A. Malainou, A. Tserepi, E. Gogolides. "Mesh-assisted" colloidal lithography and plasma etching: A route to large-area, uniform, ordered nano-pillar and nanopost fabrication on versatile substrates. Microelectronic Engineering; 88:2547-2551 (2011). doi: 10.1016/j.mee.2010.12.073
    [60] K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason. Superhydrophobic carbon nanotube forests. Nano Letters; 3:1701-1705 (2003). doi: 10.1021/nl034704t
    [61] A. Hozumi, O. Takai. Preparation of silicon oxide films having a water-repellent layer by multiple-step microwave plasma-enhanced chemical vapor deposition. Thin Solid Films; 334:54-59 (1998). doi: 10.1016/s0040-6090(98)01116-x
    [62] A. Hozumi, O. Takai. Preparation of ultra water-repellent films by microwave plasma-enhanced CVD. Thin Solid Films; 303:222-225 (1997). doi: 10.1016/s0040-6090(97)00076-x
    [63] Y. Rahmawan, M.-W. Moon, K.-S. Kim, K.-R. Lee, K.-Y. Suh. Wrinkled, Dual-Scale Structures of Diamond-Like Carbon (DLC) for Superhydrophobicity. Langmuir; 26:484-491 (2010). doi: 10.1021/la902129k
    [64] Z.-L. Fan, X.-J. Qin, H.-X. Sun, Z.-Q. Zhu, C.-j. Pei, W.-D. Liang, X.-M. Bao, J. An, P.-Q. La, A. Li, W.-Q. Deng. Superhydrophobic Mesoporous Graphene for Separation and Absorption. Chempluschem; 78:1282-1287 (2013). doi: 10.1002/cplu.201300119
    [65] X.-M. Bao, J.-F. Cui, H.-X. Sun, W.-D. Liang, Z.-Q. Zhu, J. An, B.-P. Yang, P.-Q. La, A. Li. Facile preparation superhydrophobic surfaces based on metal oxide nanoparticles. Applied Surface Science; 303:473-480 (2014). doi: 10.1016/j.apsusc.2014.03.029
    [66] J.-F. Cui, X.-M. Bao, H.-X. Sun, J. An, J.-H. Guo, B.-P. Yang, A. Li. Preparation of Superhydrophobic Surfaces by Cauliflower-Like Polyaniline. Journal of Applied Polymer Science; 131:(2014). doi: 10.1002/app.39767
    [67] W. Liang, Y. Liu, H. Sun, Z. Zhu, X. Zhao, A. Li, W. Deng. Robust and all-inorganic absorbent based on natural clay nanocrystals with tunable surface wettability for separation and selective absorption. Rsc Advances; 4:12590-12595 (2014). doi: 10.1039/c3ra47371f
    [68] H. Liu, L. Feng, J. Zhai, L. Jiang, D.B. Zhu. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir; 20:5659-5661 (2004). doi: 10.1021/la036280o
    [69] M.L. Ma, Y. Mao, M. Gupta, K.K. Gleason, G.C. Rutledge. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules; 38:9742-9748 (2005). doi: 10.1021/ma0511189
    [70] N.D. Boscher, V. Vache, P. Carminati, P. Grysan, P. Choquet. A simple and scalable approach towards the preparation of superhydrophobic surfaces - importance of the surface roughness skewness. Journal of Materials Chemistry A; 2:5744-5750 (2014). doi: 10.1039/c4ta00366g
    [71] M.H. Shi, J. Xi, H. Wang, X.D. Wu. Translucent and superhydrophobic surface prepared with a sol-gel method based on alumina nanoparticles. Journal of Adhesion Science and Technology; 22:311-318 (2008). doi: 10.1163/156856108x295419
    [72] S. Dai, D. Zhang, Q. Shi, X. Han, S. Wang, Z. Du. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments. Crystengcomm; 15:5417-5424 (2013). doi: 10.1039/c3ce40238j
    [73] Y.T. Peng, K.F. Lo, Y.J. Juang. Constructing a Superhydrophobic Surface on Polydimethylsiloxane via Spin Coating and Vapor-Liquid Sol-Gel Process. Langmuir; 26:5167-5171 (2010). doi: 10.1021/la903646h
    [74] Y.L. Wu, Z. Chen, X.T. Zeng. Nanoscale morphology for high hydrophobicity of a hard sol-gel thin film. Applied Surface Science; 254:6952-6958 (2008). doi: 10.1016/j.apsusc.2008.05.002
    [75] H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, G.Z. Cao. Optically transparent superhydrophobic silica-based films. Thin Solid Films; 472:37-43 (2005). doi: 10.1016/j.tsf.2004.06.087
    [76] N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, P. Roach. Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications; 3135-3137 (2005). doi: 10.1039/b502896e
    [77] X.J. Feng, L. Feng, M.H. Jin, J. Zhai, L. Jiang, D.B. Zhu. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. Journal of the American Chemical Society; 126:62-63 (2004). doi: 10.1021/ja038636o
    [78] M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara. Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir; 21:7299-7302 (2005). doi: 10.1021/la050901r
    [79] K.C. Chang, Y.K. Chen, H. Chen. Fabrication of superhydrophobic silica-based surfaces with high transmittance by using polypropylene and tetraeyhoxysilane precursors. Journal of Applied Polymer Science; 107:1530-1538 (2008). doi: 10.1002/app.27200
    [80] Z.Y. Deng, W. Wang, L.H. Mao, C.F. Wang, S. Chen. Versatile superhydrophobic and photocatalytic films generated from TiO2-SiO2@PDMS and their applications on fabrics. Journal of Materials Chemistry A; 2:4178-4184 (2014). doi: 10.1039/c3ta14942k
    [81] M.S. Kavale, D.B. Mahadik, V.G. Parale, P.B. Wagh, S.C. Gupta, A.V. Rao, H.C. Barshilia. Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent. Applied Surface Science; 258:158-162 (2011). doi: 10.1016/j.apsusc.2011.08.023
    [82] N.J. Shirtcliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry. Dual-scale roughness produces unusually water-repellent surfaces. Advanced Materials; 16:1929-+ (2004). doi: 10.1002/adma.200400315
    [83] M.E. Abdelsalam, P.N. Bartlett, T. Kelf, J. Baumberg. Wetting of regularly structured gold surfaces. Langmuir; 21:1753-1757 (2005). doi: 10.1021/la047468q
    [84] J.T. Han, Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban, K. Cho. Fabrication of a bionic superhydrophobicw metal surface by sulfur-induced morphological development. Journal of Materials Chemistry; 15:3089-3092 (2005). doi: 10.1039/b504850h
    [85] J. Wu, H.-J. Bai, X.-B. Zhang, J.-J. Xu, H.-Y. Chen. Thermal/Plasma-Driven Reversible Wettability Switching of a Bare Gold Film on a Poly(dimethylsiloxane) Surface by Electroless Plating. Langmuir; 26:1191-1198 (2010). doi: 10.1021/la902332q
    [86] S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis. Super-repellent composite fluoropolymer surfaces. Journal of Physical Chemistry B; 104:8836-8840 (2000). doi: 10.1021/jp0000174
    [87] J.P. Fernandez-Blazquez, D. Fell, E. Bonaccurso, A. del Campo. Superhydrophilic and superhydrophobic nanostructured surfaces via plasma treatment. Journal of Colloid and Interface Science; 357:234-238 (2011). doi: 10.1016/j.jcis.2011.01.082
    [88] M. Callies, Y. Chen, F. Marty, A. Pepin, D. Quere. Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectronic Engineering; 78-79:100-105 (2005). doi: 10.1016/j.mee.2004.12.093
    [89] Z. Ma, C. Jiang, X. Li, F. Ye, W. Yuan. Controllable fabrication of periodic arrays of high-aspect-ratio micro-nano hierarchical structures and their superhydrophobicity. Journal of Micromechanics and Microengineering; 23:(2013). doi: 10.1088/0960-1317/23/9/095027
    [90] G. Scheen, K. Ziouche, Z. Bougrioua, P. Godts, D. Leclercq, T. Lasri. Simultaneous Fabrication of Superhydrophobic and Superhydrophilic Polyimide Surfaces with Low Hysteresis. Langmuir; 27:6490-6495 (2011). doi: 10.1021/la1050805
    [91] Y.P. Li, W. Shi, S.Y. Li, M.K. Lei. Transition of water adhesion on superhydrophobic surface during aging of polypropylene modified by oxygen capacitively coupled radio frequency plasma. Surface & Coatings Technology; 213:139-144 (2012). doi: 10.1016/j.surfcoat.2012.10.037
    [92] K. Ellinas, S.P. Pujari, D.A. Dragatogiannis, C.A. Charitidis, A. Tserepi, H. Zuilhof, E. Gogolides. Plasma Micro-Nanotextured, Scratch, Water and Hexadecane Resistant, Superhydrophobic, and Superamphiphobic Polymeric Surfaces with Perfluorinated Monolayers. Acs Applied Materials & Interfaces; 6:6510-6524 (2014). doi: 10.1021/am5000432
    [93] S.M. Hurst, B. Farshchian, J. Choi, J. Kim, S. Park. A universally applicable method for fabricating superhydrophobic polymer surfaces. Colloids and Surfaces a-Physicochemical and Engineering Aspects; 407:85-90 (2012). doi: 10.1016/j.colsurfa.2012.05.012
    [94] K. Ellinas, A. Tserepi, E. Gogolides. From Superamphiphobic to Amphiphilic Polymeric Surfaces with Ordered Hierarchical Roughness Fabricated with Colloidal Lithography and Plasma Nanotexturing. Langmuir; 27:3960-3969 (2011). doi: 10.1021/la104481p
    [95] X.-S. Zhang, F.-Y. Zhu, M.-D. Han, X.-M. Sun, X.-H. Peng, H.-X. Zhang. Self-Cleaning Poly(dimethylsiloxane) Film with Functional Micro/Nano Hierarchical Structures. Langmuir; 29:10769-10775 (2013). doi: 10.1021/la4023745
    [96] A.D. Tserepi, M.E. Vlachopoulou, E. Gogolides. Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology; 17:3977-3983 (2006). doi: 10.1088/0957-4484/17/15/062
    [97] K. Tsougeni, A. Tserepi, G. Boulousis, V. Constantoudis, E. Gogolides. Control of nanotexture and wetting properties of polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing. Plasma Processes and Polymers; 4:398-405 (2007). doi: 10.1002/ppap.200600185
    [98] M. Manca, B. Cortese, I. Viola, A.S. Arico, R. Cingolani, G. Gigli. Influence of chemistry and topology effects on superhydrophobic CF4-plasma-treated poly(dimethylsiloxane) (PDMS). Langmuir; 24:1833-1843 (2008). doi: 10.1021/1a703077u
    [99] H.X. Ren, X. Chen, X.J. Huang, M. Im, D.H. Kim, J.H. Lee, J.B. Yoon, N. Gu, J.H. Liu, Y.K. Choi. A conventional route to scalable morphology-controlled regular structures and their superhydrophobic/hydrophilic properties for biochips application. Lab on a Chip; 9:2140-2144 (2009). doi: 10.1039/b905804d
    [100] L.L. Cao, T.P. Price, M. Weiss, D. Gao. Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir; 24:1640-1643 (2008). doi: 10.1021/la703401f
    [101] T.O. Yoon, H.J. Shin, S.C. Jeoung, Y.I. Park. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification. Optics express; 16:12715-12725 (2008). doi: 10.1364/oe.16.012715
    [102] L.H. Yan, H.B. Lv, C.C. Wang, X.D. Yuan. Hydro-oleophobic silica antireflective films with high laser-damage threshold. Optics and Laser Technology; 43:232-236 (2011). doi: 10.1016/j.optlastec.2010.07.001
    [103] M.H. Jin, X.J. Feng, J.M. Xi, J. Zhai, K.W. Cho, L. Feng, L. Jiang. Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromolecular Rapid Communications; 26:1805-1809 (2005). doi: 10.1002/marc.200500458
    [104] A. Mata, A.J. Fleischman, S. Roy. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices; 7:281-293 (2005). doi: 10.1007/s10544-005-6070-2
    [105] H. Bian, L. Hewei, C. Feng, Y. Qing, Q. Pubo, D. Guangqing, S. Jinhai, W. Xianhua, H. Xun. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces. Optics Express; 20:12939-12948 (2012). doi: 10.1364/oe.20.012939
    [106] E.P.T. de Givenchy, S. Amigoni, C. Martin, G. Andrada, L. Caillier, S. Geribaldi, F. Guittard. Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers. Langmuir; 25:6448-6453 (2009). doi: 10.1021/la900064m
    [107] Y.W. Choi, J.E. Han, S. Lee, D. Sohn. Preparation of a Superhydrophobic Film with UV Imprinting Technology. Macromolecular Research; 17:821-824 (2009). doi:
    [108] F.X. Zhang, H.Y. Low. Anisotropic wettability on imprinted hierarchical structures. Langmuir; 23:7793-7798 (2007). doi: 10.1021/la700293y
    [109] C. Tian, H.-P. Ji, C.-Y. Zong, C.-H. Lu. Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication. Chinese Chemical Letters; 26:15-20 (2015). doi: 10.1016/j.cclet.2014.10.003
    [110] L. Yu-Chih, H. Shu-Han, C. Yi-Chang. Thermal imprint techniques for preparation of superhydrophobic polymer coatings. Surface & Coatings Technology; 231:501-506 (2013). doi: 10.1016/j.surfcoat.2012.01.015
    [111] T. Rasilainen, A. Kirveslahti, P. Nevalainen, M. Suvanto, T.A. Pakkanen. Modification of polypropylene surfaces with micropits and hierarchical micropits/nanodepressions. Surface Science; 604:2036-2042 (2010). doi: 10.1016/j.susc.2010.08.018
    [112] B. Cortese, S. D'Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir; 24:2712-2718 (2008). doi: 10.1021/la702764x
    [113] T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, H. Arribart. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films. Bioinspiration & Biomimetics; 3:5 (2008). doi: 10.1088/1748-3182/3/4/046004
    [114] F. Cao, Z.S. Guan, D.X. Li. Preparation of material surface structure similar to hydrophobic structure of lotus leaf. Journal of Wuhan University of Technology-Materials Science Edition; 23:513-517 (2008). doi: 10.1007/s11595-007-4513-8
    [115] C.J. Weng, C.H. Chang, C.W. Peng, S.W. Chen, J.M. Yeh, C.L. Hsu, Y. Wei. Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability. Chemistry of Materials; 23:2075-2083 (2011). doi: 10.1021/cm1030377
    [116] C.W. Peng, K.C. Chang, C.J. Weng, M.C. Lai, C.H. Hsu, S.C. Hsu, S.Y. Li, Y. Wei, J.M. Yeh. UV-curable nanocasting technique to prepare bio-mimetic super-hydrophobic non-fluorinated polymeric surfaces for advanced anticorrosive coatings. Polymer Chemistry; 4:926-932 (2013). doi: 10.1039/c2py20613g
    [117] Z. Yuan, X. Wang, J. Bin, M. Wang, C. Peng, S. Xing, J. Xiao, J. Zeng, H. Chen. Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly. Applied Physics a-Materials Science & Processing; 116:1613-1620 (2014). doi: 10.1007/s00339-014-8472-6
    [118] M. Adithyavairavan, S. Subbiah. A morphological study on direct polymer cast micro-textured hydrophobic surfaces. Surface & Coatings Technology; 205:4764-4770 (2011). doi: 10.1016/j.surfcoat.2011.03.082
    [119] J. Feng, B.Y. Huang, M.Q. Zhong. Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding. Journal of Colloid and Interface Science; 336:268-272 (2009). doi: 10.1016/j.jcis.2009.03.025
    [120] K. Lee, S. Lyu, S. Lee, Y.S. Kim, W. Hwang. Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nanofibers array structures. Applied Surface Science; 256:6729-6735 (2010). doi: 10.1016/j.apsusc.2010.04.081
    [121] W.K. Cho, I.S. Choi. Fabrication of hairy polymeric films inspired by geckos: Wetting and high adhesion properties. Advanced Functional Materials; 18:1089-1096 (2008). doi: 10.1002/adfm.200701454
    [122] W. Lee, B.G. Park, K.B. Lee. Fabrication of Superhydrophobic Surface of Alumina with Nanoporous Structure. Bulletin of the Korean Chemical Society; 31:1833-1834 (2010). doi: 10.5012/bkcs.2010.31.7.1833
    [123] F. Shi, Z.Q. Wang, X. Zhang. Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders. Advanced Materials; 17:1005-+ (2005). doi: 10.1002/adma.200402090
    [124] N. Zhao, F. Shi, Z.Q. Wang, X. Zhang. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir; 21:4713-4716 (2005). doi: 10.1021/la0469194
    [125] A. Satyaprasad, V. Jain, S.K. Nema. Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc. Applied Surface Science; 253:5462-5466 (2007). doi: 10.1016/j.apsusc.2006.12.085
    [126] S.H. Hsu, W.M. Sigmund. Artificial Hairy Surfaces with a Nearly Perfect Hydrophobic Response. Langmuir; 26:1504-1506 (2010). doi: 10.1021/la903813g
    [127] M.N. Qu, G.Y. Zhao, X.P. Cao, J.Y. Zhang. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir; 24:4185-4189 (2008). doi: 10.1021/la703284f
    [128] D.J. Marchand, Z.R. Dilworth, R.J. Stauffer, E. Hsiao, J.-H. Kim, J.-G. Kang, S.H. Kim. Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor. Surface & Coatings Technology; 234:14-20 (2013). doi: 10.1016/j.surfcoat.2013.03.029
    [129] J.A.S. Ting, L.M.D. Rosario, H.V. Lee, Jr., H.J. Ramos, R.B. Tumlos. Hydrophobic coating on glass surfaces via application of silicone oil and activated using a microwave atmospheric plasma jet. Surface & Coatings Technology; 259:7-11 (2014). doi: 10.1016/j.surfcoat.2014.08.008
    [130] L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu, S. Prawer. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. Journal of Physical Chemistry B; 109:7746-7748 (2005). doi: 10.1021/jp046549s
    [131] X.D. Wu, L.J. Zheng, D. Wu. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Langmuir; 21:2665-2667 (2005). doi: 10.1021/la050275y
    [132] I.O. Ucar, C.E. Cansoy, H.Y. Erbil, M.E. Pettitt, M.E. Callow, J.A. Callow. Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers. Biointerphases; 5:75-84 (2010). doi: 10.1116/1.3483467
    [133] K. Nakata, S. Nishimoto, Y. Yuda, T. Ochiai, T. Murakami, A. Fujishirna. Rewritable Superhydrophilic-Superhydrophobic Patterns on a Sintered Titanium Dioxide Substrate. Langmuir; 26:11628-11630 (2010). doi: 10.1021/la101947y
    [134] J.A. Franco, S.E. Kentish, J.M. Perera, G.W. Stevens. Fabrication of a superhydrophobic polypropylene membrane by deposition of a porous crystalline polypropylene coating. Journal of Membrane Science; 318:107-113 (2008). doi: 10.1016/j.memsci.2008.02.032
    [135] X.M. Hou, X.B. Wang, Q.S. Zhu, J.C. Bao, C. Mao, L.C. Jiang, J.A. Shen. Preparation of polypropylene superhydrophobic surface and its blood compatibility. Colloids and Surfaces B-Biointerfaces; 80:247-250 (2010). doi: 10.1016/j.colsurfb.2010.06.013
    [136] H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert. Transformation of a simple plastic into a superhydrophobic surface. Science; 299:1377-1380 (2003). doi: 10.1126/science.1078365
    [137] H.Y. Ji, G. Chen, J. Hu, X.F. Yang, C.Y. Min, Y.T. Zhao. Fabrication of a Stable Superhydrophobic Polypropylene Surface by Utilizing Acetone as a Non-Solvent. Journal of Dispersion Science and Technology; 34:134-139 (2013). doi: 10.1080/01932691.2011.629518
    [138] Z.K. He, M. Ma, X.R. Lan, F. Chen, K. Wang, H. Deng, Q. Zhang, Q. Fu. Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter; 7:6435-6443 (2011). doi: 10.1039/c1sm05574g
    [139] E.J. Park, K.-D. Kim, H.S. Yoon, M.-G. Jeong, D.H. Kim, D.C. Lim, Y.H. Kim, Y.D. Kim. Fabrication of conductive, transparent and superhydrophobic thin films consisting of multi-walled carbon nanotubes. Rsc Advances; 4:30368-30374 (2014). doi: 10.1039/c4ra04272g
    [140] W. Sun, L.Y. Shen, L.M. Wang, K. Fu, J.A. Ji. Netlike Knitting of Polyelectrolyte Multi layers on Honeycomb-Patterned Substrate. Langmuir; 26:14236-14240 (2010). doi: 10.1021/la102136r
    [141] X.Y. Lu, J.A. Peng, B.Y. Li, C.C. Zhang, Y.C. Han. A polymer composite film with reversible responsive behaviors. Macromolecular Rapid Communications; 27:136-141 (2006). doi: 10.1002/marc.200500629
    [142] E. Chibowski, L. Holysz, K. Terpilowski, M. Jurak. Investigation of super-hydrophobic effect of PMMA layers with different fillers deposited on glass support. Colloids and Surfaces a-Physicochemical and Engineering Aspects; 291:181-190 (2006). doi: 10.1016/j.colsurfa.2006.09.022
    [143] P. Pareo, G.L. De Gregorio, M. Manca, M.S. Pianesi, L. De Marco, F. Cavallaro, M. Mari, S. Pappada, G. Ciccarella, G. Gigli. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces. Journal of Colloid and Interface Science; 363:668-675 (2011). doi: 10.1016/j.jcis.2011.07.075
    [144] P. McEleney, G.M. Walker, I.A. Larmour, S.E.J. Bell. Liquid marble formation using hydrophobic powders. Chemical Engineering Journal; 147:373-382 (2009). doi: 10.1016/j.cej.2008.11.026
    [145] E.J. Lee, J.J. Kim, S.O. Cho. Fabrication of Porous Hierarchical Polymer/Ceramic Composites by Electron Irradiation of Organic/Inorganic Polymers: Route to a Highly Durable, Large-Area Superhydrophobic Coating. Langmuir; 26:3024-3030 (2010). doi: 10.1021/la100094y
    [146] Q.D. Xie, G.Q. Fan, N. Zhao, X.L. Guo, J. Xu, J.Y. Dong, L.Y. Zhang, Y.J. Zhang, C.C. Han. Facile creation of a bionic super-hydrophobic block copolymer surface. Advanced Materials; 16:1830-+ (2004). doi: 10.1002/adma.200400074
    [147] Q. Ke, W. Fu, H. Jin, L. Zhang, T. Tang, J. Zhang. Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane. Surface & Coatings Technology; 205:4910-4914 (2011). doi: 10.1016/j.surfcoat.2011.04.073
    [148] X.H. Xua, Z.Z. Zhang, F. Guo, J. Yang, X.T. Zhu. Fabrication of superhydrophobic binary nanoparticles/PMMA composite coating with reversible switching of adhesion and anticorrosive property. Applied Surface Science; 257:7054-7060 (2011). doi: 10.1016/j.apsusc.2011.02.136
    [149] I. Saarikoski, F. Joki-Korpela, M. Suvanto, T.T. Pakkanen, T.A. Pakkanen. Superhydrophobic elastomer surfaces with nanostructured micronails. Surface Science; 606:91-98 (2012). doi: 10.1016/j.susc.2011.09.005
    [150] S.K. Papadopoulou, C. Tsioptsias, A. Pavlou, K. Kaderides, S. Sotiriou, C. Panayiotou. Superhydrophobic surfaces from hydrophobic or hydrophilic polymers via nanophase separation or electrospinning/electrospraying. Colloids and Surfaces a-Physicochemical and Engineering Aspects; 387:71-78 (2011). doi: 10.1016/j.colsurfa.2011.07.028
    [151] M. Kiuru, E. Alakoski. Low sliding angles in hydrophobic and oleophobic coatings prepared with plasma discharge method. Materials Letters; 58:2213-2216 (2004). doi: 10.1016/j.matlet.2004.01.024
    [152] Z.Z. Gu, H.M. Wei, R.Q. Zhang, G.Z. Han, C. Pan, H. Zhang, X.J. Tian, Z.M. Chen. Artificial silver ragwort surface. Applied Physics Letters; 86:3 (2005). doi: 10.1063/1.1931054
    [153] D. Sanli, C. Erkey. Monolithic Composites of Silica Aerogels by Reactive Supercritical Deposition of Hydroxy-Terminated Poly(Dimethylsiloxane). Acs Applied Materials & Interfaces; 5:11708-11717 (2013). doi: 10.1021/am403200d
    [154] S.S. Madaeni, S. Zinadini, V. Vatanpour. Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Separation and Purification Technology; 111:98-107 (2013). doi: 10.1016/j.seppur.2013.03.033
    [155] E. Hosono, S. Fujihara, I. Honma, H.S. Zhou. Superhydrophobic perpendicular nanopin film by the bottom-up process. Journal of the American Chemical Society; 127:13458-13459 (2005). doi: 10.1021/ja053745j
    [156] X.J. Feng, J. Zhai, L. Jiang. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angewandte Chemie-International Edition; 44:5115-5118 (2005). doi: 10.1002/anie.200501337
    [157] K. Acatay, E. Simsek, C. Ow-Yang, Y.Z. Menceloglu. Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angewandte Chemie-International Edition; 43:5210-5213 (2004). doi: 10.1002/anie.200461092
    [158] H.M. Shang, Y. Wang, K. Takahashi, G.Z. Cao, D. Li, Y.N. Xia. Nanostructured superhydrophobic surfaces. Journal of Materials Science; 40:3587-3591 (2005). doi: 10.1007/s10853-005-2892-9
    [159] C.P. Migliaccio, N. Lazarus. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting. Applied Surface Science; 353:269-274 (2015). doi: 10.1016/j.apsusc.2015.06.095
    [160] C.P. Migliaccio, N.S. Lazarus, Fabrication of hierarchically structured superhydrophobic PDMS surfaces by CuO casting, 2014.
    [161] J. Perera-Nunez, A. Mendez-Vilas, L. Labajos-Broncano, M.L. Gonzalez-Martin. Ionic Liquid Microdroplets as Versatile Lithographic Molds for Sculpting Curved Topographies on Soft Materials Surfaces. Langmuir; 26:17712-17719 (2010). doi: 10.1021/la102799x
    [162] A. Accardo, F. Gentile, F. Mecarini, F. De Angelis, M. Burghammer, E. Di Fabrizio, C. Riekel. Ultrahydrophobic PMMA micro- and nano-textured surfaces fabricated by optical lithography and plasma etching for X-ray diffraction studies. Microelectronic Engineering; 88:1660-1663 (2011). doi: 10.1016/j.mee.2010.12.044
    [163] L. Xiaojiang, X. Yang, B. Keyang, C. Zao, W. Yan, G. Zisheng. Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces. Applied Surface Science; 339:94-101 (2015). doi: 10.1016/j.apsusc.2015.02.157
    [164] K.C. Chang, T.L. Chuang, W.F. Ji, C.H. Chang, Y.Y. Peng, H. Shih, C.L. Hsu, J.M. Yeh, W.C. Tang, Y.C. Su. UV-curable nanocasting technique to prepare bioinspired superhydrophobic organic-inorganic composite anticorrosion coatings. Express Polymer Letters; 9:143-153 (2015). doi: 10.3144/expresspolymlett.2015.15
    [165] V.S. Gowri, L. Almeida, M.T.P. de Amorim, N.C. Pacheco, A.P. Souto, M.F. Esteves, S.K. Sanghi. Functional finishing of polyamide fabrics using ZnO-PMMA nanocomposites. Journal of Materials Science; 45:2427-2435 (2010). doi: 10.1007/s10853-010-4210-4
    [166] P. Guo, S. Zhai, Z. Xiao, Q. An. One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup. Journal of Colloid and Interface Science; 446:155-162 (2015). doi: 10.1016/j.jcis.2015.01.062
    [167] J.W. Lee, W. Hwang. Exploiting the silicon content of aluminum alloys to create a superhydrophobic surface using the sol-gel process. Materials Letters; 168:83-85 (2016). doi: 10.1016/j.matlet.2015.12.137
    [168] P. Wang, H.L. Han, J.F. Li, X.L. Fan, H.M. Ding, J.F. Wang. A facile cost-effective method for preparing poinsettia-inspired superhydrophobic ZnO nanoplate surface on Al substrate with corrosion resistance. Applied Physics a-Materials Science & Processing; 122:7 (2016). doi: 10.1007/s00339-016-9608-7
    [169] G. Gong, J. Wu, X. Jin, L. Jiang. Adhesion Tuning at Superhydrophobic States: From Petal Effect to Lotus Effect. Macromolecular Materials and Engineering; 300:1057-1062 (2015). doi: 10.1002/mame.201500143
    [170] J. Sun, J. Wang. Fabrication of superhydrophobic surfaces on FRP composites: from rose petal effect to lotus effect. Journal of Coatings Technology and Research; 12:1023-1030 (2015). doi: 10.1007/s11998-015-9692-1
    [171] A. Tonosaki, T. Nishide. Novel Petal Effect of Hafnia Films Prepared in an Aqueous Solution and Containing Hydroxy Acids. Applied Physics Express; 3:3 (2010). doi: 10.1143/apex.3.125801
    [172] J. Bico, C. Marzolin, D. Quere. Pearl drops. Europhysics Letters; 47:220-226 (1999). doi: 10.1209/epl/i1999-00548-y
    [173] E.A. Vogler. Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science; 74:69-117 (1998). doi: 10.1016/s0001-8686(97)00040-7
    [174] J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter; 7:9804-9828 (2011). doi: Doi 10.1039/C1sm05849e
    [175] B. Bhushan, M. Nosonovsky. The rose petal effect and the modes of superhydrophobicity. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences; 368:4713-4728 (2010). doi: 10.1098/rsta.2010.0203
    [176] E.F. Hare, E.G. Shafrin, W.A. Zisman. PROPERTIES OF FILMS OF ADSORBED FLUORINATED ACIDS. Journal of Physical Chemistry; 58:236-239 (1954). doi: 10.1021/j150513a011
    [177] R. Siddique, J. Khatib, I. Kaur. Use of recycled plastic in concrete: A review. Waste Management; 28:1835-1852 (2008). doi: 10.1016/j.wasman.2007.09.011
    [178] S.M. Al-Salem, P. Lettieri, J. Baeyens. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management; 29:2625-2643 (2009). doi: 10.1016/j.wasman.2009.06.004
    [179] Y. Zare. Recent progress on preparation and properties of nanocomposites from recycled polymers: A review. Waste Management; 33:598-604 (2013). doi: 10.1016/j.wasman.2012.07.031
    [180] P. Brachet, L.T. Hoydal, E.L. Hinrichsen, F. Melum. Modification of mechanical properties of recycled polypropylene from post-consumer containers. Waste Management; 28:2456-2464 (2008). doi: 10.1016/j.wasman.2007.10.021
    [181] A. Elloumi, S. Pimbert, A. Bourmaud, C. Bradai. Thermomechanical Properties of Virgin and Recycled Polypropylene Impact Copolymer/CaCO3 Nanocomposites. Polymer Engineering and Science; 50:1904-1913 (2010). doi: 10.1002/pen.21716
    [182] L. Gao Jing, H. Liu Yan, M. Li Dong. Preparation and properties of recycled polypropylene/carbon nanotube composites. Advanced Materials Research; 279:106-110 (2011). doi: 10.4028/www.scientific.net/AMR.279.106
    [183] N.T. Phuong, V. Gilbert, B. Chuong. Preparation of Recycled Polypropylene/Organophilic Modified Layered Silicates Nanocomposites Part I: The Recycling Process of Polypropylene and the Mechanical Properties of Recycled Polypropylene/Organoclay Nanocomposites. Journal of Reinforced Plastics and Composites; 27:1983-2000 (2008). doi: 10.1177/0731684407086326
    [184] P.K.S. Mural, S. Mohanty, S.K. Nayak, S. Anbudayanidhi. Polypropylene/high impact polystyrene blend nanocomposites obtained from E-waste: evaluation of mechanical, thermal and morphological properties. International Journal of Plastics Technology; 15:S46-S60 (2011). doi: 10.1007/s12588-011-9005-1
    [185] J.J. Victor, D. Facchini, U. Erb. A low-cost method to produce superhydrophobic polymer surfaces. Journal of Materials Science; 47:3690-3697 (2012). doi: 10.1007/s10853-011-6217-x
    [186] T. Rasilainen, M. Suvanto, T.A. Pakkanen. Anisotropically microstructured and micro/nanostructured polypropylene surfaces. Surface Science; 603:2240-2247 (2009). doi: 10.1016/j.susc.2009.04.037
    [187] E. Huovinen, J. Hirvi, M. Suvanto, T.A. Pakkanen. Micro-Micro Hierarchy Replacing Micro-Nano Hierarchy: A Precisely Controlled Way To Produce Wear-Resistant Superhydrophobic Polymer Surfaces. Langmuir; 28:14747-14755 (2012). doi: 10.1021/la303358h
    [188] E. Puukilainen, T. Rasilainen, M. Suvanto, T.A. Pakkanen. Superhydrophobic polyolefin surfaces: Controlled micro- and nanostructures. Langmuir; 23:7263-7268 (2007). doi: 10.1021/la063588h
    [189] W.Y. Liu, Y.T. Luo, L.Y. Sun, R.M. Wu, H.Y. Jiang, Y.J. Liu. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating. Applied Surface Science; 264:872-878 (2013). doi: 10.1016/j.apsusc.2012.10.167
    [190] Y.X. Lv, X.H. Yu, J.J. Jia, S.T. Tu, J.Y. Yan, E. Dahlquist. Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption. Applied Energy; 90:167-174 (2012). doi: 10.1016/j.apenergy.2010.12.038
    [191] M. He, J.X. Wang, H.L. Li, X.L. Jin, J.J. Wang, B.Q. Liu, Y.L. Song. Super-hydrophobic film retards frost formation. Soft Matter; 6:2396-2399 (2010). doi: 10.1039/c0sm00024h
    [192] R. Rioboo, M. Voue, A. Vaillant, D. Seveno, J. Conti, A.I. Bondar, D.A. Ivanov, J. De Coninck. Superhydrophobic surfaces from various polypropylenes. Langmuir; 24:9508-9514 (2008). doi: 10.1021/la801283j
    [193] R. Rioboo, B. Delattre, D. Duvivier, A. Vaillant, J. De Coninck. Superhydrophobicity and liquid repellency of solutions on polypropylene. Advances in Colloid and Interface Science; 175:1-10 (2012). doi: 10.1016/j.cis.2012.03.003
    [194] M.X. Liu, Z.X. Jia, F. Liu, D.M. Jia, B.C. Guo. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. Journal of Colloid and Interface Science; 350:186-193 (2010). doi: 10.1016/j.jcis.2010.06.047
    [195] W.X. Hou, B. Mu, Q.H. Wang. Studies on wettability of polypropylene/methyl-silicone composite film and polypropylene monolithic material. Journal of Colloid and Interface Science; 327:120-124 (2008). doi: 10.1016/j.jcis.2008.07.056
    [196] L. Yung-Tsan, C. Jung-Hua. A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect. Journal of Micromechanics and Microengineering; 24:055021 (055026 pp.)-055021 (055026 pp.) (2014). doi: 10.1088/0960-1317/24/5/055021
    [197] L. Yung-Tsan, C. Jung-Hua. Fabricating super-hydrophobic polydimethylsiloxane surfaces by a simple filler-dissolved process. Japanese Journal of Applied Physics; 49:127101 (127103 pp.)-127101 (127103 pp.) (2010). doi: 10.1143/jjap.49.127101
    [198] Y.-T. Lin, J.-H. Chou. A facile low-temperature and low-cost process for fabricating super-hydrophobic surface on acrylic. Journal of Materials Science; 50:6624-6630 (2015). doi: 10.1007/s10853-015-9208-5
    [199] I. You, Y. Chang Seo, H. Lee. Material-independent fabrication of superhydrophobic surfaces by mussel-inspired polydopamine. RSC Advances; 4:10330 (2014). doi: 10.1039/c3ra47626j
    [200] C. Chen, R. Li, L. Xu, D. Yan. Three-dimensional superhydrophobic porous hybrid monoliths for effective removal of oil droplets from the surface of water. RSC Advances; 4:17393 (2014). doi: 10.1039/c4ra00047a

    無法下載圖示 校內:2021-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE