| 研究生: |
吳昇展 Wu, Sheng-Chan |
|---|---|
| 論文名稱: |
藉由半導體微共振腔探測光與物質交互作用對介電係數之頻率響應以及雷射動力學之影響 Probing Light-Matter Interactions on the Dielectric Responses and Laser Dynamics in Semiconductor Microcavities |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 激子 、激子極化子 、激子極子 、半導體微共振腔 、半導體雷射 |
| 外文關鍵詞: | exciton, exciton-polariton, exciton-polaron, semiconductor microcavity, semiconductor laser |
| 相關次數: | 點閱:167 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體光學是眾多光電元件的基石。這些元件上的應用圍繞在光與物質交互作用的精神上。特殊來說,在寬能係半導體的領域內,光激發的載子以激子為主體。若與光激發產生自由電子、電洞粒子為主體的半導體比較,以激子為主體的半導體在介電係數的頻率響應和雷射動態表現上,都有著不同的特徵處。在本篇論文中,運用氧化鋅(ZnO)微米柱、二維鈣鈦礦((PEA)2PbBr4)微米盤和鈣鈦礦(CsPbBr3)微米線來揭露光(共振腔光子)與物質(激子和聲子)之間的交互作用。使用半導體微共振腔的方式可以帶來許多巧妙的優點,因為合成半導體微共振腔可以是相當自然的,共振腔的幾何正好反應出材料的晶體特徵,因此高對稱形狀的微共振腔和高結晶性的晶體可以同時被滿足。前述半導體材料照光激發產生的激子在室溫下能夠穩定存在,這些半導體也具備先天的極性。因此,從低溫到室溫的環境中,照光激發產生的激子能夠與共振腔光子和聲子同調地耦合在一起。從另一方面來看,整個物理系統若僅考慮激子、光子或聲子自身的能帶色散特徵,在彼此強耦合的情況下,將無法準確描述整體物理系統介電係數的頻率響應。我們有策略性地運用半導體微共振腔,並準確地獲取光與物質交互作用後的能帶色散特徵。我們更證明了光與物質交互作用的大小(拉比分裂能量)和溫度是相關聯的,這也顯示出材料聲子帶來的影響。運用勞倫茲振盪子模型(Lorentz oscillator model)後,材料重要的物理量如激子能階、拉比分裂能量、阻尼項、零協變能態、激子鍵結能和熱光係數可以被進一步得到。更進一步地,半導體微共振腔結構可以因為光激發而產生雷射現象。以激子為主體的半導體在光學增益的機制,也和傳統三-五族半導體雷射材料經由光激發產生自由電子、電洞粒子後的光學增益不同。所觀察到的光學增益頻譜,在激發或溫度增加的情況下都呈出現紅移(或往低能量)變動的趨勢。這可以被歸因於顯著的激子與聲子交互作用。在激發或溫度增加的情況下都會產生熱效應,這可以增加可以被激發的材料聲子模態。如此一來,來自於激子和光學聲子耦合態的光也會增加。用不同溫度環境下的氧化鋅微米柱作為典型例子,激子與聲子耦合後其準粒子的動態行為主導了高溫環境下的光學增益表現。相對地,低溫環境下的光學增益表現,則可以被激子間的散射以及激子與聲子耦合後的準粒子動態行為主導。
The semiconductor optics is the foundation of tremendous optoelectronic devices. The applications surround the spirits of light-matter interactions. Especially, in the fields of wide band gap semiconductors, the dominated photo-induced carriers would be excitons. Comparing with the semiconductors with electron-hole plasma, the semiconductors with excitonic systems hebave different characteristics on dielectric responses and lasing dynamics. In this thesis, the ZnO microrods, quasi-2D perovskites (PEA)2PbBr4 microplates, and CsPbBr3 microwires were utilized as the semiconductor microcavities to reveal the interactions between light (cavity photons) and matters (ex: excitons and phonons). The methodology of adopting semiconductor microcavity bring many ingenious benefits. The semiconductor microcavities can be synthesized naturally. Because the geometries of the cavities just reflect the crystallinity of the materials, such that highly symmetric microcavities and microcrystals with good crystallinity can be obtained at the same time. The photo-induced excitons are stable in these materials at room temperature. These semiconductors also possess polar characteristics in nature. Therefore, the photo-induced excitons can couple with cavity photons (i.e. exciton-polaritons) and phonons (i.e. exciton-polarons) coherently from low temperatures to RT. On the other hand, the energy dispersions of bare excitons, photons, and phonons cannot describe the system’s dielectric responses correctly in the strong coupling regime. We adopted the strategies of semiconductor microcavities and extracted the accurate energy dispersions behind these light-matter interactions. We further proved the magnitute of light-matter interaction (i.e. Rabi-splitting energy) is temperature-dependent that reflects the influence of phonons. By applying the Lorentz oscillator model, the important physical quantities of materials, such as the exciton energy levels, Rabi-splitting energies, damping terms, zero-detuning state, exciton binding energy, and the coefficients of thermal-optics were derived. Furthermore, the semiconductor microcavities can achieve lasing actions by optical pumping. The mechanism of optical gain in the excitonic system is very different from the electron-hole plasma system in the conventional III-V semiconductor lasers. The observed optical gain spectra broaden toward the longer wavelength (lower energy) regime when the excitation or the temperature is increased. This can be attributed to the significant exciton-phonon interactions while increasing the pumping or the temperatures. Both of them cause the thermal effect and make the activated phonon modes become more. In this regard, the emissions from the exciton and multi-LO phonon coupling states (i.e. the exciton-polaron states) are enhanced. As the typical case shown in ZnO microrods at different temperatures, the dynamics of exciton-polaron should dominate the optical gain at high temperatures. On the other hand, the behaviors of exciton-exciton scattering and exciton-polarons would both contribute to the optical gain at low temperatures.
1 C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, Phys. Rev. B 75, 115203 (2007).
2 G. E. Jellison and L. A. Boatner, Phys. Rev. B 58, 3586 (1998).
3 S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, J. Appl. Phys. 93, 756 (2003).
4 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Lett. 15, 3692 (2015).
5 D. B. Straus and C. R. Kagan, J. Phys. Chem. Lett. 9, 1434 (2018).
6 Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, Adv. Funct. Mater. 26, 6238 (2016).
7 S.-C. Wu, C.-S. Wu, C.-H. Chien, Y.-W. Zhang, C.-X. Yang, C. Liu, M.-H. Li, C.-F. Lin, Y.-H. Wu, B.-H. Lin, Y.-H. Chou, Y.-C. Chang, P. Chen, and H.-C. Hsu, Adv. Funct. Mater. 33, 2213427 (2023).
8 S. C. Wu, G. Y. Zhuang, Y. C. Chang, and H. C. Hsu, ACS Photonics 8, 1413 (2021).
9 S.-C. Wu, C.-X. Yang, J.-S. Huang, Y.-C. Chang, C.-H. Chien, and H.-C. Hsu, APL Materials 11 (2023).
10 S. C. Wu, Y. C. Liu, L. J. Lin, Y. C. Chang, and H. C. Hsu, Opt. Express 29, 37797 (2021).
11 C. Klingshirn, in Semiconductor Optics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 241.
12 R. Johne, D. Solnyshkov, and G. Malpuech, Appl. Phys. Lett. 93, 211105 (2008).
13 R. Butté, G. Christmann, E. Feltin, A. Castiglia, J. Levrat, G. Cosendey, A. Altoukhov, J.-F. Carlin, and N. Grandjean, presented at the Gallium Nitride Materials and Devices IV, 2009 (unpublished).
14 J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-F. Hsieh, S.-C. Wang, and H. Deng, Opt. Express 19, 4101 (2011).
15 J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409 (2006).
16 D. Solnyshkov, H. Ouerdane, and G. Malpuech, J. Appl. Phys. 103 (2008).
17 F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Reveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, Phys. Rev. Lett. 110, 196406 (2013).
18 M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, Phys. Rev. B 72, 201301 (2005).
19 T. Xie, S. Song, K. Schwenke, M. Singh, L. E. Gonzalez, E. Del Gado, and J.-i. Hahm, Langmuir 31, 10493 (2015).
20 I. Pelant and J. Valenta, in Luminescence Spectroscopy of Semiconductors (Oxford University Press, 2012), pp. 98.
21 Y. Song, S. Zhang, C. Zhang, Y. Yang, and K. Lv, Crystals 9, 395 (2019).
22 H. Chen, C. Tsai, Y. Huang, C. Kuo, H. Hsu, and W. Hsieh, Journal of Physics D: Applied Physics 49, 095105 (2016).
23 B. Yan, R. Chen, W. Zhou, J. Zhang, H. Sun, H. Gong, and T. Yu, Nanotechnology 21, 445706 (2010).
24 C. Klingshirn, in Semiconductor Optics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 295.
25 C. M. Iaru, A. Brodu, N. J. J. van Hoof, S. E. T. ter Huurne, J. Buhot, F. Montanarella, S. Buhbut, P. C. M. Christianen, D. Vanmaekelbergh, C. de Mello Donega, J. G. Rivas, P. M. Koenraad, and A. Y. Silov, Nat. Commun. 12, 5844 (2021).
26 T. Lanigan-Atkins, X. He, M. J. Krogstad, D. M. Pajerowski, D. L. Abernathy, G. N. M. N. Xu, Z. Xu, D. Y. Chung, M. G. Kanatzidis, S. Rosenkranz, R. Osborn, and O. Delaire, Nat. Mater. 20, 977 (2021).
27 D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, and C. R. Kagan, J. Am. Chem. Soc. 138, 13798 (2016).
28 I. Pelant and J. Valenta, in Luminescence Spectroscopy of Semiconductors (Oxford University Press, 2012), pp. 161.
29 C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H. C. Hsu, Nanoscale Res. Lett. 9, 446 (2014).
30 Y. D. Chen, T. H. B. Ngo, Y. C. Chang, D. J. Lin, and H. C. Hsu, JOSA B 35, 2228 (2018).
31 C. Klingshirn, in Semiconductor Optics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 73.
32 R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, Nano Lett. 17, 3982 (2017).
33 Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, Light-Sci. Appl. 2, e76 (2013).
34 E. M. Purcell, in Confined Electrons and Photons: New Physics and Applications, edited by Elias Burstein and Claude Weisbuch (Springer US, Boston, MA, 1995), pp. 839.
35 R. Schmidt-Grund, P. Kühne, C. Czekalla, D. Schumacher, C. Sturm, and M. Grundmann, Thin Solid Films 519, 2777 (2011).
36 W. Shan, W. Walukiewicz, J. Ager III, K. Yu, H. Yuan, H. Xin, G. Cantwell, and J. Song, Appl. Phys. Lett. 86, 191911 (2005).
37 N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar, J. Appl. Phys. 93, 126 (2002).
38 X. Guo, C. P. Tripp, C. Chen, Y. Wang, S. Yin, and W. Qin, Crystengcomm 18, 3130 (2016).
39 J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, K. H. Koh, and K. H. Park, Appl. Phys. Lett. 92 (2008).
40 C. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, New J. Phys. 13, 103021 (2011).
41 E. Mallet, P. Disseix, D. Lagarde, M. Mihailovic, F. Réveret, T. V. Shubina, and J. Leymarie, Phys. Rev. B 87, 161202 (2013).
42 S. Rudin, T. L. Reinecke, and B. Segall, Phys. Rev. B 42, 11218 (1990).
43 D. Hamby, D. Lucca, M. Klopfstein, and G. Cantwell, J. Appl. Phys. 93, 3214 (2003).
44 Y. P. Varshni, Physica 34, 149 (1967).
45 R. Schmidt-Grund, T. Michalsky, M. Wille, and M. Grundmann, Phys. Status Solidi B 256, 1800462 (2019).
46 C. H. Chien, R. Khanum, C. L. Liu, R. S. Moirangthem, and Y. C. Chang, Opt. Mater. Express 11, 1568 (2021).
47 W. Tao, C. Zhang, Q. Zhou, Y. Zhao, and H. Zhu, Nat. Commun. 12, 1400 (2021).
48 C. S. Wu, S. C. Wu, B. T. Yang, Z. Y. Wu, Y. H. Chou, P. Chen, and H. C. Hsu, ACS Appl. Mater. Interfaces 13, 13556 (2021).
49 T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).
50 R. Su, A. Fieramosca, Q. Zhang, H. S. Nguyen, E. Deleporte, Z. Chen, D. Sanvitto, T. C. H. Liew, and Q. Xiong, Nat. Mater. 20, 1315 (2021).
51 F. Zheng and L.-w. Wang, Energy Environ. Sci. 12, 1219 (2019).
52 T. Chen, W.-L. Chen, B. J. Foley, J. Lee, J. P. C. Ruff, J. Y. P. Ko, C. M. Brown, L. W. Harriger, D. Zhang, C. Park, M. Yoon, Y.-M. Chang, J. J. Choi, and S.-H. Lee, Proc. Natl. Acad. Sci. 114, 7519 (2017).
53 Q. Du, C. Zhu, Z. Yin, G. Na, C. Cheng, Y. Han, N. Liu, X. Niu, H. Zhou, H. Chen, L. Zhang, S. Jin, and Q. Chen, ACS Nano 14, 5806 (2020).
54 H. Chen, J. Lin, J. Kang, Q. Kong, D. Lu, J. Kang, M. Lai, L. N. Quan, Z. Lin, J. Jin, L.-w. Wang, M. F. Toney, and P. Yang, Sci. Adv. 6, eaay4045 (2020).
55 L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, and A. Rao, ACS Nano 11, 10834 (2017).
56 Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D’Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, and L. Manna, J. Am. Chem. Soc. 138, 1010 (2016).
57 Ü. Özgür, A. Teke, C. Liu, S. J. Cho, H. Morkoç, and H. O. Everitt, Appl. Phys. Lett. 84, 3223 (2004).
58 X. Wang, D. Yu, and S. Xu, Opt. Express 28, 13817 (2020).
59 V. A. Dragomir, S. Neutzner, C. Quarti, D. Cortecchia, A. Petrozza, S. Roorda, D. Beljonne, R. Leonelli, A. R. S. Kandada, and C. Silva, arXiv preprint arXiv:1812.05255 (2018).
60 W. Tao, Y. Zhang, and H. Zhu, Accounts Chem. Res. 55, 345 (2022).
61 O. Yaffe, Y. Guo, L. Z. Tan, D. A. Egger, T. Hull, C. C. Stoumpos, F. Zheng, T. F. Heinz, L. Kronik, M. G. Kanatzidis, J. S. Owen, A. M. Rappe, M. A. Pimenta, and L. E. Brus, Phys. Rev. Lett. 118, 136001 (2017).
62 J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, and J. Tang, Nature 563, 541 (2018).
63 W. Stadler, D. M. Hofmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, Phys. Rev. B 51, 10619 (1995).
64 B. J. Frey, D. B. Leviton, and T. J. Madison, presented at the Optomechanical technologies for Astronomy, 2006 (unpublished).
65 O. Aoudé, P. Disseix, J. Leymarie, A. Vasson, M. Leroux, E. Aujol, B. Beaumont, A. Trassoudaine, and Y. André, Phys. Rev. B 77, 045206 (2008).
66 A. V. Gopal, R. Kumar, A. S. Vengurlekar, A. Bosacchi, S. Franchi, and L. N. Pfeiffer, J. Appl. Phys. 87, 1858 (2000).
67 N. Watanabe, T. Kimoto, and J. Suda, J. Appl. Phys. 104, 106101 (2008).
68 J. Talghader and J. Smith, Appl. Phys. Lett. 66, 335 (1995).
69 K. Qiu, Y. Zhao, Y. Gao, X. Liu, X. Ji, S. Cao, J. Tang, Y. Sun, D. Zhang, B. Feng, and X. Xu, Appl. Phys. Lett. 104, 081109 (2014).
70 T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, Sci. Adv. 5, eaax0786 (2019).
71 T. Handa, H. Tahara, T. Aharen, A. Shimazaki, A. Wakamiya, and Y. Kanemitsu, Phys. Rev. Mater. 4, 074604 (2020).
72 T. Handa, T. Yamada, M. Nagai, and Y. Kanemitsu, Phys. Chem. Chem. Phys. 22, 26069 (2020).
73 X. Wang, Y. Wang, W. Gao, L. Song, C. Ran, Y. Chen, and W. Huang, Adv. Mater. 33, 2003615 (2021).
74 J. Chen, Y. Fu, L. Samad, L. Dang, Y. Zhao, S. Shen, L. Guo, and S. Jin, Nano Lett. 17, 460 (2017).
75 Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, Nano Lett. 14, 5995 (2014).
76 M. C. Brennan, J. E. Herr, T. S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, and M. Kuno, J. Am. Chem. Soc. 139, 12201 (2017).
77 B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, ACS Nano 11, 10681 (2017).
78 F. Li, M. Jiang, Y. Cheng, Y. Zhang, Z. Yang, Y. Peng, W. Ma, Q. Chen, C. Wang, K. Liu, R. Wang, J. Lu, and C. Pan, Nanoscale 13, 4432 (2021).
79 P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, ACS Nano 11, 5766 (2017).
80 Z. Liu, Q. Shang, C. Li, L. Zhao, Y. Gao, Q. Li, J. Chen, S. Zhang, X. Liu, and Y. Fu, Appl. Phys. Lett. 114, 101902 (2019).
81 M. C. Brennan, J. Zinna, and M. Kuno, ACS Energy Lett. 2, 1487 (2017).
82 A. Balena, A. Perulli, M. Fernandez, M. L. De Giorgi, G. Nedelcu, M. V. Kovalenko, and M. Anni, J. Phys. Chem. C 122, 5813 (2018).
83 Y. Liu, J. Wang, L. Zhang, W. Liu, C. Wu, C. Liu, Z. Wu, L. Xiao, Z. Chen, and S. Wang, Opt. Express 27, 29124 (2019).
84 W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, Nanoscale 11, 3145 (2019).
85 Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, Nanophotonics 9, 2251 (2020).
86 G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti, D. Ceratti, and D. Cahen, J. Phys. Chem. Lett. 11, 2490 (2020).
87 K. Shibata, J. Yan, Y. Hazama, S. Chen, and H. Akiyama, J. Phys. Chem. C 124, 18257 (2020).
88 S. Rudin, T. Reinecke, and B. Segall, Phys. Rev. B 42, 11218 (1990).
89 L. N. Quan, Y. Park, P. J. Guo, M. Y. Gao, J. B. Jin, J. M. Huang, J. K. Copper, A. Schwartzberg, R. Schaller, D. T. Limmer, and P. D. Yang, Proc. Natl. Acad. Sci. USA 118, 2104425118 (2021).
90 A. A. Bakulin, O. Selig, H. J. Bakker, Y. L. A. Rezus, C. Müller, T. Glaser, R. Lovrincic, Z. Sun, Z. Chen, A. Walsh, J. M. Frost, and T. L. C. Jansen, J. Phys. Chem. Lett. 6, 3663 (2015).
91 J. M. Hvam, Solid State Commun. 12, 95 (1973).
92 M. Wille, T. Michalsky, E. Krüger, M. Grundmann, and R. Schmidt-Grund, Appl. Phys. Lett. 109, 061102 (2016).
93 T. Michalsky, M. Wille, C. P. Dietrich, R. Roder, C. Ronning, R. Schmidt-Grund, and M. Grundmann, Appl. Phys. Lett. 105 (2014).
94 L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, Phys. Rev. B 85, 121201 (2012).
95 N. N. Vasilyev, E. N. Borisov, and B. V. Novikov, Physics of the Solid State 62, 1774 (2020).
96 C. Klingshirn, in Semiconductor Optics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 459.
97 C. Klingshirn, in Semiconductor Optics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 475.
98 B. Kim, H. Kim, S. Park, K. Kyhm, and C. Cho, Appl. Phys. Lett. 97 (2010).
99 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).
100 B. Kim and K. Kyhm, Journal of Korean Physical Society 51, 1726 (2007).