| 研究生: |
梁均合 linang, jiun-her |
|---|---|
| 論文名稱: |
三維複雜地形彈性波資料的P波與S波分離及逆時移位地層影像 Separations of P- and S-waves and Scalar Reverse-Time Migration of Three-Dimensional Elastic Seismic Data in Topographic Areas |
| 指導教授: |
孫鎮球
Sun, Robert J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 複雜地形 、逆時移位 、三維 、P波 、分離 、S波 |
| 外文關鍵詞: | Three-Dimensional, Seismic Data, Topographic Areas, Reverse-Time Migration |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是將疊前三維三分量彈性波中的反射P波與S波分離的技術,由平坦地形擴展至複雜地形,做為應用於實測資料的準備。針對地形起伏大到難以用靜態修正來處理的變化,採取對高低起伏地形不做靜態修正,而直接以散量與旋量的計算,完全的分離出P波與S波,是本研究的目的與特色。假設地球介質是均向性的,在複雜地形地表接收的疊前三維三分量彈性波,準備一個模擬地形且垂直方向有速度變化的三維彈性計算模型。波動傳播是以有限差分法模擬彈性波動方程式計算的。在每一個有限差分計算格點,供給P波速度及S波速度。
本研究是以位移向量有限差分法,假設正方形格點,將三維三分量彈性波資料,由接收位置向下傳播至計算模型中,在傳播過程中,在地表以下某一深度,沿著平行於地表的一個面(稱為分解面),計算散量(純量)和旋量(三分量的向量),並留下記錄,得到分離的P波與S波。
接著進行的逆時移位,是直接將分離的P波與S波以反時間序列傳播至介質,並在反射點成像的移位法。將彈性波計算模型分割成一個P波速度計算模型和一個S波速度計算模型,將散量(只含P波)以純量波動方程式、P波速度計算,向下傳播至P波速度計算模型中,並依據成像時間記錄該位置的P波振幅,得到複雜地形的P波逆時移位地層影像;將散量的x、y和z分量,以純量波動方程式、S波速度計算,分別由分解面向下傳播至S波速度計算模型中,並依據成像時間記錄該位置的S波振幅,得到複雜地形的S波逆時移位地層影像。
We expand the algorithm that separates the P- and S-waves in three-dimension (3-D), three-component (3-C) elastic seismic data into topographic area, as part the study toward applying the algorithm on real data. Assume that the earth medium is isotropic. For a 3-D, 3-C elastic seismic data, we prepare a three-dimensional vertically homogeneous elastic computational model that simulate the medium with topographic surface. Finite difference simulation of the elastic wave equation is used to calculate wave propagation. Each finite difference grid point is provided with a P-velocity and an S-velocity.
Finite-difference simulating displacement elastic wave equation are used to compute wave propagations, uses squared finite-difference grid. The 3-D, 3-C elastic data is downward extrapolated from the receiver locations into the elastic computational model using elastic wave equation. During downward extrapolation, divergence (a scalar) and curl (a three-component vector) of the displacement are computed and recorded on a decomposition surface that is concurrent to the earth’s surface and is a few grid increments below.
And then go on to proceed Reverse-Time Migration, The elastic computation model is then split into one P-velocity computational model and an S-velocity computational model. The divergence (contains P-waves only) is downward extrapolated into the P-velocity computational model using the scalar wave equation, and according to the time of formation of image, note down the amplitude of P wave. The x-, x- and z-components of the curl (contains S-waves only) are downward extrapolated into the S-velocity computational model using the scalar wave equation, and according to the time of formation of
image, note down the amplitude of S wave.
Aki, K., and P. G. Richards, 1980, Quantitative seismology: Freeman Co.
Chang, W. F., and G. A. McMechan, 1987, Elastic reverse-time migration: Geophysics, 52, 1365-1375.
Chang, W. F., and G. A. McMechan, 1994, 3-D elastic prestack reverse-time depth migration: Geophysics, 59, 597-609.
Dankbaar, J. W. M., 1985, Separation of P-waves and S-waves: Geophys. Prosp., 33, 970-986.
Dellinger, J., and Etgen, J., 1990, Wave-field separation in two-dimensional anisotropic media: Geophysics, 55, 914-919.
Hestholm, S.O., and Ruud, B.O., 1994, 2D finite-difference elastic wave modeling including surface topography: Geophysical Prospecting, 42, 371-390.
Hou, A., and Marfurt, K. J., 2002, Multicomponent depth migration by scalar wavefield extrapolation: Geophysics, 67, 1886-1894.
Sun, R., and McMechan, G. A., 1986, Pre-Stack reverse-time migration for elastic waves with application to synthetic offset vertical seismic profiles: Proceedings of the IEEE, 74, 457-563.
Sun, R., and McMechan, G. A., 1988, Nonliear reverse-time inversion of elastic offset VSP data: Geophysics, v. 53, 1295-1302.
Sun, R., and McMechan, G. A., 1991a, Full-wavefield inversion of wide-aperture SH and Love wave data: Geoph. Jour. Int., 106, 67-75.
Sun, R., and McMechan, G. A., 1991b, Depth filtering for one-component data: Geophysics, 56, 1428-1485.
Sun, R., and McMechan, G. A., 1992, 2-D full-wavefield inversion for wide-aperture, elastic, seismic data: Geoph. Jour. Int., 111, 1-10.
Sun, R., Sung, Q. C. and Liu, T. K., 1998, Near-surface evidence of recent Taiwan Orogeny detected by a shallow seismic method: Earth Planet. Sci. Let., 163, 291-300.
Sun, R., Yang J.H. and Sung, Q. C., 1999, Late Quaternary tectonic activity detected by shallow seismics in southwestern coastal Taiwan: Jour. Geo. Soc. China, 42, 447-464.
Sun, R., 1999, Separating P- and S-waves in a prestack 2-dimensioanl elastic seismogram: 61st Ann. Mtg., Eur. Assn. Geosci. Eng., Extended Abstracts, 6-23.
Sun, R., and McMechan, G. A., 2001, Scalar reverse-time depth migration of elastic seismic data: Geophysics, 66, 1515-1518.
Sun, R., and G. A. McMechan, 2001, Scalar reverse-time depth migration of prestack elastic seismic data: Geophysics, 66, 1519-1527.
Sun, R., McMechan, G. A., Hsiao, H. H., and Chow, J., 2004, Separating P- and S-waves in prestack three-dimensional elastic seismograms using divergence and curl: Geophysics, 69, 286-297.
Sun, R., McMechan, G. A., C. S. Lee, J. D. Chow, and C. H. Chen, 2006, Prestack Scalar Reverse-Time Depth Migration of Three-Dimensional Elastic Seismic Data: Geophysics, 71, 199-207.
Zhe, J., and Greenhalgh, S. K., 1997, Prestack multicomponent migration: Geophysics, 62, 598-613.
王秋萍,1999,二為彈性波的聲波逆時移位,碩士論文,國立成功大學地球科學研究所。
孫鎮球,王秋萍,1999二維應變逆時移位,中國地質學會八十八年年會暨學術研討會大會手冊及論文摘要, 台灣台北,112-114。
孫鎮球,1999,彈性波中P波S波之分離,一九九九中國地球物理學會成果發表會論文集,台灣基隆,119-121。
孫鎮球、蕭旭宏、周錦德,2002,三維彈性波資料中P-S波的分離,中國地質學會九十一年年會暨學術研討會論文摘要,58-61。
孫鎮球,2003,複雜地形逆時移位,二零零三經濟部,石油基金,石油開發技術研究發展計劃成果發表會論文集,台灣。
孫鎮球,2004,三維彈性波的P波與S波分離技術,二零零四經濟部,石油基金,石油開發技術研究發展計劃成果發表會論文集,台灣,135-138。
楊千慧,2000,不規則地形中彈性波之P-S波分離,碩士論文,國立成功大學地球科學研究所。