| 研究生: |
林強 Lam, Keong |
|---|---|
| 論文名稱: |
300-W級史特靈引擎理論模式與實作 Theoretical Model and Manufacturing of a 300-W Stirling Engine |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 史特靈引擎 、非理想絕熱分析 、軸功 、性能量測 、設計 |
| 外文關鍵詞: | Stirling engine, Non-ideal adiabatic model, Shaft power, Performance test, Design |
| 相關次數: | 點閱:128 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用二階非理想絕熱分析法設計及製作300-W級史特靈引擎,並掌握高效能史特靈引擎效能提升的關鍵技術。本研究針對β型史特靈引擎做設計,因其機構緊湊,可有效減小引擎體積,相較於其它型引擎有較大的輸出功率。引擎的性能量測以轉速、扭力和輸出軸功為主,利用不同填充工作流體結合各種再生器,在不同引擎轉速之下觀察其性能差異。研究結果指出,再生器的選擇是影響史特靈引擎效率的關鍵。在相同填充壓力下,引擎的功率表現以利用氦氣作為工作流體比利用空氣的來得更好。在8 bar填充壓力、加熱溫度為850 ℃、120目孔質材料的再生器下,引擎的作功可達390 W,熱效率達32 %。此外,本研究的數值模擬結果符合實驗數據趨勢,可彌補實驗量測的不足,未來可利用此理論模型輔助設計更高功率的史特靈引擎。
In this study, a second order non-ideal adiabatic model is used to investigate the performance of a beta type 300-W Stirling engine. In this report, the outline of the engine design and the results of performance test are presented. Experiments are conducted with two different filling working gases (air and helium) and with various wire meshes that forms the regenerator. The torque, rotation speed and shaft power of the engine have been measured under various conditions. Results indicate that the power generated by filling helium as working fluid is larger than air. In addition, the efficiency of Stirling engine is highly dependent on the mesh of the woven mesh regenerator. As the filling pressure is elevated to 8 bar and a No.120 woven mesh is used to form the regenerator, the shaft power of the engine reaches 390 W. In addition, results of numerical simulation by the model developed in this study closely agree with the experimental data. This implies that the present theoretical model can be helpful and applied in the future development of an engine of higher capacity.
[1] Green, M. A., Emery, K., Hishikawa, Y., and Warta, W., 2011, "Solar cell efficiency tables (version 37)," Progress in Photovoltaics: Research and Applications, 19(1), pp. 84-92.
[2] Mancini, T., Heller, P., Butler, B., Osborn, B., Schiel, W., Goldberg, V., Buck, R., Diver, R., Andraka, C., and Moreno, J., 2003, "Dish-Stirling systems: An overview of development and status," Journal of Solar Energy Engineering, 125, p. 135.
[3] Sternlicht, B., 1984, "The stirling engine: prime mover of the 21st century," Endeavour, 8(1), pp. 21-28.
[4] Organ, A. J., 1997, The regenerator and the Stirling engine, Mechanical Engineering Publications.
[5] Hargreaves, C. M., 1991, The Philips Stirling engine, Elsevier Science Ltd.
[6] Thieme, L. G., 1981, "High-power baseline and motoring test results for the GPU-3 Stirling engine," National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center.
[7] Engineers, I. o. M., 2000, Marine engineers review, Institute of Marine Engineers.
[8] RIGG, and Programme, D., 2004, Greenhouse issues, The Programme.
[9] 林昱廷, 民國100年, "自由活塞式史特靈引擎之動態模擬與製作,"碩士論文, 成功大學, 台南.
[10] Cheng, C. H., and Yang, H. S., "Optimization of geometrical parameters for Stirling engines based on theoretical analysis," Applied Energy, 92, pp. 395-405.
[11] Kirkley, D. W., 1962, "Determination of the optimum configuration for a Stirling engine," Journal of Mechanical Engineering Science, 4(3), pp. 204-212.
[12] Tanaka, M., Yamashita, I., and Chisaka, F., 1990, "Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow," JSME International Journal. Ser. 2, 33(2), pp. 283-289.
[13] Organ, A. J., 1994, "The wire mesh regenerator of the Stirling cycle machine," International Journal of Heat and Mass Transfer, 37(16), pp. 2525-2534.
[14] 楊燿禎, 民國98年, "小型史特靈發電機之設計及性能測試,"碩士論文, 成功大學, 台南.
[15] Karabulut, H., Çınar, C., Aksoy, F., and Yücesu, H. S., 2010, "Improved Stirling engine performance through displacer surface treatment," International Journal of Energy Research, 34(3), pp. 275-283.
[16] Senft, J. R., 2007, Mechanical efficiency of heat engines, Cambridge Univ Pr.
[17] Senft, J. R., 2002, "Optimum Stirling engine geometry," International Journal of Energy Research, 26(12), pp. 1087-1101.
[18] Finkelstein, T., 1994, "Insights into the thermodynamics of Stirling cycle machines," AIAA-94-3951-CP, pp. 1829-1834.
[19] Urieli, I., Rallis, C. J., and Berchowitz, D. M., 1977, "Computer simulation of Stirling cycle machines," Proc. Intersociety Energy Conversion Engineering Conference, American Nuclear Society, Inc, pp. 1512-1521.
[20] Cheng, C. H., and Yu, Y. J., 2010, "Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, 35(11), pp. 2590-2601.
[21] Parlak, N., Wagner, A., Elsner, M., and Soyhan, H. S., 2009, "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, 34(1), pp. 266-273.
[22] Tanaka, M., Yamashita, I., and Chisaka, F., 1990, "Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow," JSME International Journal. Ser. 2,, 33(2), pp. 283-289.
[23] Bin Nun, U., and Manitakos, D., 2004, "Low cost and high performance screen laminate regenerator matrix," Cryogenics, 44(6–8), pp. 439-444.
[24] Kays, W. M., and London, A. L., 1984, Compact heat exchangers, Krieger Pub. Co.
[25] El Ehwany, A. A., Hennes, G. M., Eid, E. I., and El-Kenany, E., 2011, "Experimental investigation of the performance of an elbow-bend type heat exchanger with a water tube bank used as a heater or cooler in alpha-type Stirling machines," Renewable Energy, 36(2), pp. 488-497.
[26] Finkelstein, T., 1967, "Thermodynamic analysis of Stirling engines," J Spacecraft Rockets, 4, pp. 1184-1189.
[27] Kongtragool, B., and Wongwises, S., 2006, "Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator," Renewable Energy, 31(3), pp. 345-359.