簡易檢索 / 詳目顯示

研究生: 李俊國
Lee, Choon-kok
論文名稱: 全透明式電極及改善抗反射層性質於三五族太陽能電池之特性研究
Investigation of Transparent Electrode and Anti-Reflection Coating Properties on III–V Compounds Multi-Junction Solar Cell
指導教授: 李清庭
Lee, Ching-ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 79
中文關鍵詞: 全透明式電極太陽能電池抗反射層
外文關鍵詞: solar cell, anti-reflection coating, transparent electrode
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要研究係利用全透明式電極設計方式及製作多層抗反射層(anti-reflection coating, ARC)於三五族多接面太陽能電池(InGaP/InGaAs/Ge triple-junction solar cell)上之特性研究。由於傳統式金屬電極在太陽能電池元件上會有遮光效應(shadow effect)影響,故採用全透明式電極設計使遮光效應降至最低,進而讓更多太陽光入射並引入元件內部而增強元件之光伏效應。此外,利用(NH4)2Sx鹼性溶液處理太陽能電池之窗層(n-type AlInP),以改善薄金屬(thin AuGeNi/Au, 5nm/2nm)與銦鍚氧化物(ITO)之間歐姆接觸(ohmic contact)之特性,進而降低元件之串聯電阻值,提高載子萃取能力。而由傳輸線模型(TLM)製作結果顯示,薄金屬與銦鍚氧化物間特徵接觸電阻值(specific contact resistance)經過硫化處理後可降至6.83×10-6Ωcm2。另一方面,吾人利用固定射頻磁控濺鍍系統(sputter system)基座,使濺鍍槍以斜向方式成長低折射率之抗反射膜,使其增強抗反射層之抗反射效果並減少入射太陽光反射之損耗,進而提高太陽能電池元件之轉換效率至30.3%。
    本研究之主要目的為探討如何減少入射太陽光之損失,因此本研究採用全透明式電極設計以及改善抗反射層之抗反射特性兩種方式來增強元件之光伏效應特性。由實驗結果得知,應用此兩種方式可將太陽能電池之光電轉換效率提昇至31.92%。

    To improve the conversion efficiency of the tandem-type III–V multi-junction solar cell, the transparent electrode designed solar cell and low reflectivity of anti-reflection coating (ARC) on conventional metal electrode solar cell were fabricated. The transparent electrode of indium tin oxide (ITO) material was used to substitute the conventional metal electrode on solar cell for increasing the illuminated area. Moreover, applying the (NH4)2Sx treatment on the AlInP surface before the transition layer deposition, the ohmic contact property of thin AuGeNi/Au and ITO can be improved. According the measurement of TLM fabrication, the specific contact resistance by (NH4)2Sx treatment was 6.83×10-6Ωcm2. Therefore, this method can decrease the resistivity and reduce the loss of the photo-induced carriers. Furthermore, in order to reduce the losses of solar reflection, multi-layer ARC and oblique sputtering by fixing holder of sputter system were used to deposit low reflection of ARC material. The conversion efficiency was 30.3% by this technology fabrication for solar cell device.
    In our research, using the transparent electrode to replace metal electrode and oblique sputtering to deposit low reflective index material can effectively reduce the losses of incident solar reflection and promote the conversion efficiency of solar cell device. The 31.92% conversion efficiency of solar cell can be achieved by using the transparent electrode design and anti-reflection coating (ARC) improvement method.

    Abstract (in Chinese).....................................I Abstract (in English)...................................III Acknowledgements..........................................V Contents................................................VII Table Captions............................................X Figure Captions..........................................XI Chapter 1 Introduction....................................1 Chapter 2 Basic theories of the Solar Cell...............10 2-1 Basic principle of solar cell........................10 2-2 The equivalent circuit analysis of the solar cell....10 2-3 Series resistance Rs of solar cell measurement.......14 2-4 Transmission-line model (TLM)........................15 2-5 The rule of vector for anti-reflection coating.......16 References...............................................17 Chapter 3 Experimental Procedures........................25 3-1 Fabrication of TLM devices...........................25 3-1-1 The ohmic contact of AuGeNi/Au on n-type AlInP.....25 3-1-2 The ohmic contact property between AuGeNi/Au and n-type AlInP treated by (NH4)2Sx treatment.................27 3-2 Fabrication of anti-reflection coatings (ARC)........28 3-2-1 ITO/SiO2 double-layer ARC..........................28 3-2-2 ITO/SiO2/SiO2(oblique sputtering) triple-layer ARC.29 3-3 Fabrication of solar cell devices....................30 3-3-1 Conventional metal electrode fabrication for III-V compounds multi-junction solar cell......................30 3-3-2 Transparent electrode fabrication for III-V compounds multi-junction solar cell......................32 3-3-3 Conventional metal fabrication of III-V compounds multi-junction solar cell with triple-layer ARC..........34 Chapter 4 Results and Discussion.........................46 4-1 Analysis and measurement of optical and electrical properties of thin metal film (AuGeNi/Au)................46 4-1-1 Electrical properties of thin metal film...........46 4-1-2 Optical properties of thin metal film..............47 4-2 Comparison of the electrical properties with and without (NH4)2Sx treatment...............................48 4-2-1 Compare the electrical property of TLM measurement.48 4-3 Analysis and measurement of the transparent electrode design tandem-type III–V multi-junction solar cell......49 4-4 Investigation of the anti-reflection coating (ARC) for conventional metal electrode solar cell..................53 4-4-1 Optical properties of double-layer ARC.............54 4-4-2 Optical properties of triple-layer ARC.............56 4-4-3 Conversion efficiencies of solar cell devices with double-layer ARC and triple-layer ARC....................57 Chapter 5 Conclusion.....................................78

    [1] A. W. Blakers, A. Wang, A. M. Miline, J. Zhao, and M. A. Green, “22.8% efficiency silicon solar cell”, Applied Physics Letters, 55, 1363 (1989).
    [2] A. M. Green, W. Blakers, and S. R. Weham, proc. 9th E.C. Photovolt. Solar Energy Conf., Dordrecht: Kluwer Academic Publ., 301. (1989).
    [3] M. Yamaguchi, S. Wakamatsu, in: Proceedings of the 25th IEEE Photovoltaic Specialists Conf., IEEE, New York, 167 (1996).
    [4] A. Poruba, J. Springer, L. Mullerova and A. Beitlerova, “Temperature dependence of the optical absorption coefficient of microcrystalline silicon”, Journal of Non-Crystalline Solids, 338–340, 222 (2004).
    [5] T. Takamoto, M. Yamaguchi, and S. J. Taylor, “Radiation resistance of high-efficiency InGaP/GaAs tandem solar cells”, Solar Energy Materials & Solar Cells, 58, 265 (1999).
    [6] M. Yamaguchi, “III–V compound multi-junction solar cells: present and future”, Solar Energy Materials & Solar Cells, 75, 261 (2003).
    [7] M. Hein, M. Meusel, and C. Baur, 17th EU-PVSEC Munish, Paper OB5.4 (2001).
    [8] M. Yamaguchi, T. Takamoto, K. Araki, and N. E. Daukes, “Multi-junction III–V solar cells: current status and future potential”, Solar Energy, 79, 78 (2005).
    [9] M. Yamaguchi, K. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki, “Novel materials for high-efficiency III–V multi-junction solar cells”, Solar Energy, 82, 173 (2008).
    [10] Y. Mols, M. R. Leys, E. Simons, J. Poortmans, and G. Borghs, “Study of intrinsically carbon-doped AlGaAs layers for tunnel diodes in multi-junction solar cells”, Journal of Crystal Growth, 298, 758 (2007).
    [11] I. R. Stolle, I. Garcia, B. Galiana, and C. Algora, “Improvements in the MOVPE growth of multi-junction solar cells for very high concentration”, Journal of Crystal Growth, 298, 762 (2007).
    [12] Y. Nannichi, and H. Oigawa, Extended Abstracts, 22nd Conf. Solid State Devices & Materials, Sendai 1990, 453 (Business Center for Academic Societies, Tokyo)
    [13] Y. J. Lin, W. X. Lin, C. T. Lee, and F. T. Chien, “Changes in optical and electrical properties and surface recombination velocity of n-type GaN due to (NH4)2Sx treatment”, Solid State Communications, 137, 257 (2006).
    [14] X. Zhang, F. Zhang, E. Lu, and P. Xu, “A novel sulfur-passivation method and magnetic overlayers on passivated III–V semiconductor surface”, Vacuum, 57, 145 (2000).
    [15] M. Wolf, and H. Rauschenbach, “Series resistance effects on solar cell measurements”, Advanced Energy Conversion, 3 , 455 (1963).
    [16] R. A. Sinton, and A. Cuevas, Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, James & James, London, 1152 (2000).
    [17] S. M. Sze, “Semiconductor Devices Physics and Technology” (2003).
    [18] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell performance M. S. Thesis”, CYCU, Taiwan, R.O.C. (2005).
    [19] 莊家琛, “太陽能工程-太陽能電池篇”, 全華出版社 (2005).
    [20] M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report (1970).
    [21] D. A. Neamen, “Semiconductor Physics and Devices” (2003).
    [22]D. K. Schroder, “Semiconductor Material and Device Characterization” (1998).
    [23] 高孝維, “N型氮化鎵高熱穏定性歐姆接觸之研究”, 國立中央大學光電科學研究所, 碩士論文 (1999).
    [24] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社 (2002).
    [25] C. Huh, S. W. Kim, H. S. Kim, I. H. Lee, and S. J. Park, “Effective sulfur passivation of an n-type GaN surface by an alcohol-based sulfide solution,” J. Appl. Phys. 87, 4591-4593 (2000).
    [26] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems”, Sol. Energy, 90, 1308-1321 (2006).
    [27] D. Pysch, A. Mette, and S.W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells”, Sol. Energy, 91, 1698-1706 (2007).
    [28] 丁金磊, 程曉舫, 翟載騰, 查珺, 茆美琴, “太陽能電池填充因子隨日照強度變化的理論分析與計算”, Engineering Science, 9, 6 (2007)
    [29] R. A. Sinton, and A. Cuevas, Proceedings of the 16th European Photovoltaic Solar Energy Conference Glasgow, UK, James & James, London, 1152 (2000).

    無法下載圖示 校內:2028-08-04公開
    校外:2028-08-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE