簡易檢索 / 詳目顯示

研究生: 張瑋成
Chang, Wei-Cheng
論文名稱: 局部共振地震超材料之減震行為探討與效益評估
Assessment of Seismic Screening Effects for Seismic Metamaterial with Local Resonators
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 193
中文關鍵詞: 地震超材料局部共振外部隔減震數值模擬振動台試驗
外文關鍵詞: seismic metamaterial, local resonance, external seismic isolation, numerical simulation, shaking table test
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震所帶來的危害為人類社會長久重視之問題,而當中地震超材料作為一種新型態的隔減震手段引起學者們高度的興趣。透過材料內之單元結構於外部擾動下的特殊動力特性,將使超材料展現負的等效質量、負的柏松比或負的剪力模數等自然界中罕見的物理性質。而有別於過去的隔減震結構,超材料可僅設置於保護區外圍而不用直接與結構物接觸,且其中的局部共振機制更有望使其設計尺寸低於約1/10個波長,因此將有利於屏蔽低頻且長波長之地震波。而本文的研究目標即是以局部共振機制為基礎的地震超材料。為驗證其可行性,過程將透過允許輸入水平剪力波的振動台系統與自製之共振單元以探討單元結構於砂土層中的動力行為,並採振幅降低因子ARF值評估其減震效益。而除實體物理模型試驗外,研究中亦使用數值軟體PLAXIS 2D進行相關分析。模擬中不僅探討與試驗相應之單元結構模型,亦完成局部共振機制於雷利波波場中的有關研究,從而探討各類單元形式、尺寸與材料參數對於其屏蔽效益之影響,並期望以此為往後地震超材料的實際應用提供各影響因子之效應評估。

    The devastating impact of earthquakes on human society has long been a significant concern. In recent years, seismic metamaterials have attracted high interest as a new form of vibration isolation and mitigation. By the unique dynamic properties of the unit cells under external disturbances, seismic metamaterials exhibit rare physical characteristics such as negative effective mass, negative Poisson's ratio, or negative shear modulus.Unlike traditional seismic isolation structures, seismic metamaterials can be placed only at the periphery of the protected area without direct contact with the structure. Additionally, the local resonance mechanism within these materials allows for design sizes smaller than approximately 1/10 of the wavelength, making them particularly effective in attenuating low-frequency and long-wavelength seismic waves.To verify their feasibility, experimental investigations will be conducted using a shaking table system that allows for horizontal shear wave input, along with a resonator to examine the dynamic behavior of the unit cell in sandy soil layers.The effectiveness of vibration reduction will be evaluated using the amplitude reduction factor (ARF). In addition to physical model experiments, numerical analysis using PLAXIS 2D software will be employed. The simulations will not only explore the corresponding unit cell model in relation to the experiment but also investigate the local resonance mechanism in Rayleigh wave fields. This will enable an assessment of the influence of various unit forms, sizes, and material parameters on the shielding effectiveness. The findings are expected to provide preliminary insights and recommendations for the practical application of seismic metamaterials by evaluating the effects of different influencing factors.

    摘要 I ABSTRACT II 致謝 IX 目錄 X 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與流程架構 2 第二章 文獻回顧 5 2.1 波與波傳 5 2.1.1 彈性應力波之波傳現象 5 2.1.2 地震波簡介 8 2.1.3 近地表震波屏蔽技術-ARF值 9 2.2 超材料之發展歷史與應用 12 2.3 地震超材料之機制分類 15 2.3.1 布拉格散射 15 2.3.2 局部共振 16 2.3.3 拉脹性材料 19 2.4 局部共振與單元結構之等效負質量 21 2.4.1 共振現象 21 2.4.2 單元結構之等效負質量與頻率帶隙 24 2.5 地震超材料之試驗回顧 29 第三章 研究方法 35 3.1 一維離散模型之動力分析 35 3.2 局部共振單元結構之物理模型配置 38 3.2.1 單元結構物理模型之設計概述 38 3.2.2 加速度計與振動台系統 40 3.3 數值模擬軟體-PLAXIS 42 3.3.1 PLAXIS簡介 42 3.3.2 PLAXIS基本操作流程 42 3.3.3 PLAXIS之運算原理 44 3.3.4 PLAXIS材料模型 51 3.3.5 界面元素 60 3.3.6 動力邊界 63 第四章 單元結構振動台試驗與數值模擬 67 4.1 單元結構振動台試驗之數值模擬-線彈性土壤 67 4.1.1 單元結構數值模型之有效性驗證與分析方法 67 4.1.2 模型幾何與材料參數 73 4.1.3 模型網格與觀測點 76 4.1.4 動力邊界與材料阻尼 78 4.1.5 模擬步驟與分析階段 84 4.1.6 模擬結果 85 4.2 單元結構振動台試驗 93 4.2.1 試驗設計與配置 93 4.2.2 試體準備 101 4.2.3 試驗流程 104 4.2.4 試驗結果-純土體特性 105 4.2.5 試驗結果-含共振單元之土體反應 109 4.3 單元結構振動台試驗之數值模擬-非線彈性土壤 119 4.3.1 模型土體之材料參數設定 119 4.3.2 單元結構模型之模擬 124 第五章 局部共振於雷利波場中之波傳行為探討 131 5.1 模型建立 132 5.1.1 共振單元設計 132 5.1.2 模型幾何與材料參數 135 5.1.3 模型網格與觀測點 138 5.1.4 動力邊界與材料阻尼 139 5.1.5 模擬步驟與分析階段 141 5.2 單頻共振單元於雷利波場中之模擬結果 142 5.2.1 垂直向共振單元 142 5.2.2 水平向共振單元 151 5.2.3 垂直向與水平向共振單元之章節小結 156 第六章 共振單元於雷利波場中之配置探討 158 6.1 單頻共振單元於雷利波場中之敏感度分析。 158 6.1.1 單元深度與波長比 158 6.1.2 單元質量塊單位重 163 6.1.3 共振單元數量 166 6.2 寬帶隙超材料於雷利波場中之模擬結果 169 6.2.1 單元排列順序與個數 169 6.2.2 單元頻率解析度 177 第七章 結論與建議 183 7.1 結論 183 7.2 建議 185 參考文獻 186 附錄 雷利波與垂直向共振單元之耦合行為數學推導 190

    1.林子媛,2022,「近斷層地震下振動台樁土互制模型試驗」,國立成功大學土木工程學系,碩士論文
    2.李冠慧、汪向榮、蘇于琪、游忠翰、張國鎮、陳東陽,2020,「地震超材料設計之減震分析與效益評估」,中國土木水利工程學刊; 32(7): 597-607
    3.簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,2019,「新型態外部隔減震技術」,中國土木水利工程學刊; 31(4): 395-410
    4.Avilés, J., Sánchez-Sesma, F. J. (1988) “Foundation isolation from vibrations using piles as barriers.” Journal of Engineering Mechanics, 114(11), 1854-1870.
    5.Bragg W. L. (1913) “The diffraction of short electromagnetic waves by a crystal.” Proceedings of the Cambridge Philosophical Society, 17(1), 43-57.
    6.Brûlé, S., Javelaud E. H., Enoch, S. and Guenneau, S. (2017) “Flat lens effect on seismic waves propagation in the subsoil.” Scientific Reports, 7, 18066
    7.Brûlé, S., Enoch, S. and Guenneau, S. (2020) “Emergence of seismic metamaterials: Current state and future perspectives.” Physics Letters A, 384(1), 126034
    8.Boechler, N., Eliason, J. K., Kumar, A., Maznev, A. A., Nelson, K. A. and Fang, N. (2013) “Interaction of a contact resonance of microspheres with surface acoustic waves.” Physical Review Letters, 111(3), 036103
    9.Bolt, B. A. (1993), “Earthquakes” W. H. Freeman and Company, New York
    10.Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R. V. (2016) “Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances.” Scientific Reports, 6(1), 19238
    11.Colombi, A., Colquitt, D., Roux, P., Guenneau, S. and Craster, R. V. (2016) “A seismic metamaterial: The resonant metawedge.” Scientific Reports, 6(1), 27717
    12.Chopra, A. K. (2007) “Dynamics of Structures: Theory and Applications to Earthquake Engineering.” Prentice Hall, Inc., Englewood Cliffs, New Jersey
    13.Duncan, J. M. and Chang, C. Y. (1970) “Nonlinear analysis of stress and strain in soils.” Journal of Soil Mechanic and Foundations Div, 96(5), 1629-1653
    14.Grima, J. N., Alderson, A. and Evans, K. E. (2004) “Negative possion's ratio from rotating rectangles.” Computational Methods in Science and Technology, 10(2), 137-145
    15.Hardin, B. O. and Drnevich, V. P. (1972) “Shear Modulus and Damping in Soil: Design Equations and Curves” Journal of the Soil Mechanics and Foundations Division, 98(7), 667-692
    16.Huang, J. and Shi, Z. (2013) “Application of periodic theory to rows of piles for horizontal vibration attenuation.” International Journal of Geomechanics, 13, 132-142.
    17.Huang, H. H., Sun, C. T., Huang, G. L. (2009) “On the negative effective mass density in acoustic metamaterials.” International Journal of Engineering Science, 47(4), 610-617
    18.John, S., (1987) “Strong localization of photons in certain disordered dielectric superlattices.” Physical Review Letters, 58(23), 2486
    19.Krödel, S., Thomé, N. and Daraio, C. (2015) “Wide band-gap seismic metastructures.” Extreme Mechanics Letters, 4, 111-117
    20.Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B., (1993) “Acoustic band structure of periodic elastic composites.” Physical Review Letters, 71, 2022
    21.Koga, Y., and Matsuo, O. (1990) “Shaking table tests of embankments resting on liquefiable sandy ground” Soils and Foundations, 30(4), 162-174
    22.Kondner, R. L. and Zelasko, J. S. (1963) “A hyperbolic stress-strain formulation for sand” Proc. 2nd Pn-American Conf. on Soil Mech. And Found. Eng., Bazil, 289-324
    23.Liao, S. and Sangrey, D. A. (1978) “Use of piles as isolation barriers.” Journal of the Geotechnical Engineering Division, 104(9), 1139-1152.
    24.Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P. (2000) “Locally resonant sonic materials.” Science; 289(5485): 1734-1736
    25.Masters I. G. and Evans K. E. (1996) “Models for the Elastic Deformation of Honeycombs.” Composite Structures, 35(4), 403-422
    26.Milton, G. W. and Willis J. R. (2007) “On modifications of Newton’s second law and linear continuum elastodynamics.” Proceedings of The Royal Society, 463, 855-880
    27.Pendry J. B. (2000) “Negative refraction makes a perfect lens.” Physical Review Letters, 85(18), 3966
    28.Palermo, A., Krödel, S., Marzani, A. and Daraio, C. (2016) “Engineered metabarrier as shield from seismic surface waves.” Scientific Reports, 6(1), 39656
    29.Plaxis b. v. (2022). Plaxis 2D version 2022, reference manual, Delft, Netherlands
    30.Richart, F. E., Jr., Hall, J. R., and Woods, R. D. (1970), “Vibration of Soils and Foundations.” Prentice Hall, Inc., Englewood Cliffs, New Jersey
    31.Schanz, T., Vermeer, P. A., and Bonnier, P. G. (2019). “The hardening soil model: Formulation and verification.” Beyond 2000 in Computational Geotechnics, 281-296
    32.Smith, D. R., Padilla W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S. (2000) “Composite Medium with Simultaneously Negative Permeability and Permittivity.” Physical Review Letters, 84(18), 4184
    33.Veselago, V. G. (1968) “The Electrodynamic of Substances with Simultaneously Negative Values of ϵ and μ.” Soviet Physics Uspekhi, 10(4), 509-514
    34.Wood, R. D. (1968) “Screening of surface wave in soils.” Journal of the Soil Mechanics and Foundations Division, 94(4), 951-979.
    35.Yao, S., Zhou, X. and Hu, G. (2008) “Experimental study on negative effective mass in a 1D mass-spring system.” New Journal of Physics, 10(4), 043020
    36.Yablonovitch, E. (1987) “Inhibited spontaneous emission in soild-state physics and electronics.” Physical Review Letters, 58(20), 2059
    37.Zhu, J., Chen, Y., Zhu, X., Garcia-Vidal, F. J., Yin, X., Zhang, W., and Zhang, X. (2013) “Acoustic rainbow trapping.” Scientific Reports, 3, 1728

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE