| 研究生: |
張瑋成 Chang, Wei-Cheng |
|---|---|
| 論文名稱: |
局部共振地震超材料之減震行為探討與效益評估 Assessment of Seismic Screening Effects for Seismic Metamaterial with Local Resonators |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 193 |
| 中文關鍵詞: | 地震超材料 、局部共振 、外部隔減震 、數值模擬 、振動台試驗 |
| 外文關鍵詞: | seismic metamaterial, local resonance, external seismic isolation, numerical simulation, shaking table test |
| 相關次數: | 點閱:39 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地震所帶來的危害為人類社會長久重視之問題,而當中地震超材料作為一種新型態的隔減震手段引起學者們高度的興趣。透過材料內之單元結構於外部擾動下的特殊動力特性,將使超材料展現負的等效質量、負的柏松比或負的剪力模數等自然界中罕見的物理性質。而有別於過去的隔減震結構,超材料可僅設置於保護區外圍而不用直接與結構物接觸,且其中的局部共振機制更有望使其設計尺寸低於約1/10個波長,因此將有利於屏蔽低頻且長波長之地震波。而本文的研究目標即是以局部共振機制為基礎的地震超材料。為驗證其可行性,過程將透過允許輸入水平剪力波的振動台系統與自製之共振單元以探討單元結構於砂土層中的動力行為,並採振幅降低因子ARF值評估其減震效益。而除實體物理模型試驗外,研究中亦使用數值軟體PLAXIS 2D進行相關分析。模擬中不僅探討與試驗相應之單元結構模型,亦完成局部共振機制於雷利波波場中的有關研究,從而探討各類單元形式、尺寸與材料參數對於其屏蔽效益之影響,並期望以此為往後地震超材料的實際應用提供各影響因子之效應評估。
The devastating impact of earthquakes on human society has long been a significant concern. In recent years, seismic metamaterials have attracted high interest as a new form of vibration isolation and mitigation. By the unique dynamic properties of the unit cells under external disturbances, seismic metamaterials exhibit rare physical characteristics such as negative effective mass, negative Poisson's ratio, or negative shear modulus.Unlike traditional seismic isolation structures, seismic metamaterials can be placed only at the periphery of the protected area without direct contact with the structure. Additionally, the local resonance mechanism within these materials allows for design sizes smaller than approximately 1/10 of the wavelength, making them particularly effective in attenuating low-frequency and long-wavelength seismic waves.To verify their feasibility, experimental investigations will be conducted using a shaking table system that allows for horizontal shear wave input, along with a resonator to examine the dynamic behavior of the unit cell in sandy soil layers.The effectiveness of vibration reduction will be evaluated using the amplitude reduction factor (ARF). In addition to physical model experiments, numerical analysis using PLAXIS 2D software will be employed. The simulations will not only explore the corresponding unit cell model in relation to the experiment but also investigate the local resonance mechanism in Rayleigh wave fields. This will enable an assessment of the influence of various unit forms, sizes, and material parameters on the shielding effectiveness. The findings are expected to provide preliminary insights and recommendations for the practical application of seismic metamaterials by evaluating the effects of different influencing factors.
1.林子媛,2022,「近斷層地震下振動台樁土互制模型試驗」,國立成功大學土木工程學系,碩士論文
2.李冠慧、汪向榮、蘇于琪、游忠翰、張國鎮、陳東陽,2020,「地震超材料設計之減震分析與效益評估」,中國土木水利工程學刊; 32(7): 597-607
3.簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,2019,「新型態外部隔減震技術」,中國土木水利工程學刊; 31(4): 395-410
4.Avilés, J., Sánchez-Sesma, F. J. (1988) “Foundation isolation from vibrations using piles as barriers.” Journal of Engineering Mechanics, 114(11), 1854-1870.
5.Bragg W. L. (1913) “The diffraction of short electromagnetic waves by a crystal.” Proceedings of the Cambridge Philosophical Society, 17(1), 43-57.
6.Brûlé, S., Javelaud E. H., Enoch, S. and Guenneau, S. (2017) “Flat lens effect on seismic waves propagation in the subsoil.” Scientific Reports, 7, 18066
7.Brûlé, S., Enoch, S. and Guenneau, S. (2020) “Emergence of seismic metamaterials: Current state and future perspectives.” Physics Letters A, 384(1), 126034
8.Boechler, N., Eliason, J. K., Kumar, A., Maznev, A. A., Nelson, K. A. and Fang, N. (2013) “Interaction of a contact resonance of microspheres with surface acoustic waves.” Physical Review Letters, 111(3), 036103
9.Bolt, B. A. (1993), “Earthquakes” W. H. Freeman and Company, New York
10.Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R. V. (2016) “Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances.” Scientific Reports, 6(1), 19238
11.Colombi, A., Colquitt, D., Roux, P., Guenneau, S. and Craster, R. V. (2016) “A seismic metamaterial: The resonant metawedge.” Scientific Reports, 6(1), 27717
12.Chopra, A. K. (2007) “Dynamics of Structures: Theory and Applications to Earthquake Engineering.” Prentice Hall, Inc., Englewood Cliffs, New Jersey
13.Duncan, J. M. and Chang, C. Y. (1970) “Nonlinear analysis of stress and strain in soils.” Journal of Soil Mechanic and Foundations Div, 96(5), 1629-1653
14.Grima, J. N., Alderson, A. and Evans, K. E. (2004) “Negative possion's ratio from rotating rectangles.” Computational Methods in Science and Technology, 10(2), 137-145
15.Hardin, B. O. and Drnevich, V. P. (1972) “Shear Modulus and Damping in Soil: Design Equations and Curves” Journal of the Soil Mechanics and Foundations Division, 98(7), 667-692
16.Huang, J. and Shi, Z. (2013) “Application of periodic theory to rows of piles for horizontal vibration attenuation.” International Journal of Geomechanics, 13, 132-142.
17.Huang, H. H., Sun, C. T., Huang, G. L. (2009) “On the negative effective mass density in acoustic metamaterials.” International Journal of Engineering Science, 47(4), 610-617
18.John, S., (1987) “Strong localization of photons in certain disordered dielectric superlattices.” Physical Review Letters, 58(23), 2486
19.Krödel, S., Thomé, N. and Daraio, C. (2015) “Wide band-gap seismic metastructures.” Extreme Mechanics Letters, 4, 111-117
20.Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B., (1993) “Acoustic band structure of periodic elastic composites.” Physical Review Letters, 71, 2022
21.Koga, Y., and Matsuo, O. (1990) “Shaking table tests of embankments resting on liquefiable sandy ground” Soils and Foundations, 30(4), 162-174
22.Kondner, R. L. and Zelasko, J. S. (1963) “A hyperbolic stress-strain formulation for sand” Proc. 2nd Pn-American Conf. on Soil Mech. And Found. Eng., Bazil, 289-324
23.Liao, S. and Sangrey, D. A. (1978) “Use of piles as isolation barriers.” Journal of the Geotechnical Engineering Division, 104(9), 1139-1152.
24.Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P. (2000) “Locally resonant sonic materials.” Science; 289(5485): 1734-1736
25.Masters I. G. and Evans K. E. (1996) “Models for the Elastic Deformation of Honeycombs.” Composite Structures, 35(4), 403-422
26.Milton, G. W. and Willis J. R. (2007) “On modifications of Newton’s second law and linear continuum elastodynamics.” Proceedings of The Royal Society, 463, 855-880
27.Pendry J. B. (2000) “Negative refraction makes a perfect lens.” Physical Review Letters, 85(18), 3966
28.Palermo, A., Krödel, S., Marzani, A. and Daraio, C. (2016) “Engineered metabarrier as shield from seismic surface waves.” Scientific Reports, 6(1), 39656
29.Plaxis b. v. (2022). Plaxis 2D version 2022, reference manual, Delft, Netherlands
30.Richart, F. E., Jr., Hall, J. R., and Woods, R. D. (1970), “Vibration of Soils and Foundations.” Prentice Hall, Inc., Englewood Cliffs, New Jersey
31.Schanz, T., Vermeer, P. A., and Bonnier, P. G. (2019). “The hardening soil model: Formulation and verification.” Beyond 2000 in Computational Geotechnics, 281-296
32.Smith, D. R., Padilla W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S. (2000) “Composite Medium with Simultaneously Negative Permeability and Permittivity.” Physical Review Letters, 84(18), 4184
33.Veselago, V. G. (1968) “The Electrodynamic of Substances with Simultaneously Negative Values of ϵ and μ.” Soviet Physics Uspekhi, 10(4), 509-514
34.Wood, R. D. (1968) “Screening of surface wave in soils.” Journal of the Soil Mechanics and Foundations Division, 94(4), 951-979.
35.Yao, S., Zhou, X. and Hu, G. (2008) “Experimental study on negative effective mass in a 1D mass-spring system.” New Journal of Physics, 10(4), 043020
36.Yablonovitch, E. (1987) “Inhibited spontaneous emission in soild-state physics and electronics.” Physical Review Letters, 58(20), 2059
37.Zhu, J., Chen, Y., Zhu, X., Garcia-Vidal, F. J., Yin, X., Zhang, W., and Zhang, X. (2013) “Acoustic rainbow trapping.” Scientific Reports, 3, 1728