| 研究生: |
洪琳貴 Hung, Lin-Kuei |
|---|---|
| 論文名稱: |
研究氫電漿對於利用分子束磊晶系統成長氮化硼薄膜的效應 Study the Hydrogen Plasma Effects on Boron Nitride Thin Film Growth by Plasma-assisted Molecular Beam Epitaxy |
| 指導教授: |
吳忠霖
Wu, Chung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 電漿輔助式分子束磊晶 、六方氮化硼 、氫氣電漿 、薄膜成長 、晶格分析 |
| 外文關鍵詞: | Plasma-assisted molecular beam epitaxy, Hexagonal Boron Nitride, Hydrogen plasma, Thin films growth, Lattice constant analysis |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用分子束磊晶成長高品質的氮化硼薄膜,藉由比較成長過程中有無氫電漿通入的樣品數據,研究氫電漿對於利用分子束磊晶系統成長氮化硼薄膜的效應。根據氫電漿對基板表面的作用原理,可以得知氫電漿鋪在基板上,具有增長蒸鍍至基板的表面原子(硼原子)在基板表面的擴散長度(Diffusion length)。我們期望氫電漿的通入可以改善樣品的表面形貌,使得樣品表面更具有薄膜狀的結構,獲得品質更好的h-BN薄膜。
氫電漿的通入,除了增長硼原子在基板表面的擴散路徑,利於薄膜的成長外,亦可增加硼原子與氮氣電漿在表面接觸的機率,提升六方氮化硼的產量。我們目前成長h-BN薄膜所遭遇到的問題,就是產量太過於稀少,導致許多的量測都無法進行,無法判斷是否成功長出h-BN。我們選擇在成長過程通入氫電漿,就是希望能夠增加產量,才能夠對樣品進行更多的量測。
根據文獻的研究,氫電漿除了影響樣品的表面,也在氮氣-氫氣混合電漿中扮演重要角色,其影響的層面我們也一併探討。
In this study, we demonstrate two kinds of methods of synthesizing hexagonal Boron Nitride (h-BN) in order to study the hydrogen plasma effects on h-BN thin film growth by plasma-assisted molecular beam epitaxy (PAMBE) system on Si(111) substrate. We found that the hydrogen atoms which deposited on substrate could increase the diffusion length of metal atoms during epitaxial growth, which means the quality might be improved. We used the reflection high energy electron diffraction (RHEED) to in situ monitor the epitaxial thin film surface crystalline phase. We also used scanning electron microscopy (SEM) to measure our sample’s morphology, and analyzed a-axis and c-axis lattice constants of our sample by using cross-sectional tunneling electron microscopy (TEM); and detected phonon vibrational modes of our sample by using Raman spectroscopy.
1. A. K. Geim, K. Novoselov, Nature Materials, 6 (2007), pp. 183-191.
2. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
3. Ashcroft, N. W. & Mermin, N.D. Solid State Physics (Brooks Cole, 1976).
4. Park, C-H. et al., Nature Phys. 4, 213¬¬–217 (2008).
5. Xue, J. et al. Nature Mater. 10, 282–285 (2011).
6. G. Cassabois et al., Nature Photonics volume10, pages 262–266 (2016).
7. N. Alem et al., Phys. Rev. B 80, 155425 (2009).
8. G. Giovannetti et al., Phys. Rev. B 76, 073103 (2007).
9. C. R. Dean et al., Nature Nanotechnology volume 5, pages 722–726 (2010).
10. Young, A. F. et al., Phys. Rev. B 85, 235458 (2012).
11. I. Meric et al., Nature Nanotech. 3, 654–659 (2008).
12. , J. H. Warner et al., ACS Nano 4, 1299–1304 (2010).
13. Jang, A.-R. et al., Nano Lett. acs.nanolett.6b01051 (2016).
14. Y. Morishita et al., Appl. Phys. Lett. 67, 2500 (1995).
15. Priest et al., Surface and Coatings Technology 145(2001) 152-163.
16. Borst et al., The Journal of Chemical Physics 59, 5830 (1973).
17. Tamaki et al., Plasmas & Ions (2000) 3, 33–39.
18. Cui et al., Appl. Phys. Lett. 80, 4139 (2002).
19. MATSUMOTO et al., J. Less-Common Metals, 84 (1982) 157 – 163.
20. J. Park et al., Electrochemical and Solid-State Letters, 4 (4) C17-C19 (2001).
21. Petitjean et al., J. Phys. D: Appl. Phys. 17 919-929. (1984).
22. TAKAHASHI et al., Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L 502–L 504. (2001).
23. Roman V. Gorbachev et al., small 2011, 7, No. 4, 465–468.
24. Quan Huang et al., J. Appl. Phys. 112, 053518 (2012).
校內:2023-08-01公開