| 研究生: |
袁聖翔 Yuan, Sheng-Hsiang |
|---|---|
| 論文名稱: |
即時影像辨識之跨樓層物料收發機器人 A Delivering Robot Roaming Between Floors with Real-time Recognition Capability |
| 指導教授: |
王宗一
Wang, Tzone-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 自走機器人 、即時影像辨識 、跨樓層 |
| 外文關鍵詞: | Mobile Robot, Real-time Image Recognition, cross-floors |
| 相關次數: | 點閱:85 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對忙碌的社會,人們總希望有個在旁服務的小幫手,而此時機器人便可以突顯它的實用價值,幫忙做一些簡單的服務及幫助,像是跑腿送文件,幫忙運送飲料或餐點,倒垃圾,亦或者幫助行動不便的人按電梯,甚至危險或反覆性的工作等,這些在每天忙碌的生活中上演,而為了達到更多的服務項目,機器人需要一隻強健的手臂,以及即時的影像辨識演算法來輔助完成各式各樣的任務。而現今機器人的工作環境大多侷限在同一平面或同一樓層,且現在的建築大多採用高樓層方式建築,並裝置有電梯,因此本研究最後目的是研製一台可跨樓層運送物件的服務機器人。
在控制上,首先使用者透過人機介面告知機器人任務及目標,載入環境地圖和目標物的圖樣資料庫,利用路徑規劃使機器人移動到目的地,影像辨識運用SIFT演算法提取輸入影像的特徵點,再與載入的圖樣資料做匹配,攝影機隨著機器手臂的機構旋轉,就可達到自動搜尋環境的功能,當計算出目標物的相對位置後,啟動機器手臂執行按電梯或抓取物品的動作,最後透過實驗來驗證本論文機器人的功能。
Nowadays, living in a busy society, people always hope there are assistants around to help them with tedious works. That highlights the necessity and importance of service robots. They not only can provide simple service and assistance, such as sending files, disposing garbage, serving drinks, and etc., but also can help disabled people with daily life needs. Moreover, they can even serve in repetitive situations or dangerous environments. In order to achieve such various functions, a robot needs a robust manipulator, as well as real-time image recognition algorithms. To enable a service robot to work in a high building, which is norm these days, it is important also to make the robot able to roam between different floors.
The aim of this study is to develop a service robot that can roam across floors by autonomously taking lifts for delivering various objects. Maps of environments and feature points of objects of images from different perspectives extracted by using SIFT algorithm are established beforehand. The robot is controlled by a human-computer interface (HCI) to inform the robot its missions and goals. After given a task, the robot load the map of the environment and the patterns of the target images first. Next, a planned path guides the robot to the destination. A camera mounted on the manipulator keeps searching the targeted object in the environment and extracting feature points of objects found in the input images to match with the feature points of the loaded patterns of the targeted object. Once found, the object can be grabbed for delivering.
[1] iRobot公司Roomba, http://www.irobot.com/ family /index.jsp ?categoryId =25 01652&s=A-ProductAge
[2] Qingmei Yang; Jianmin Sun; , "An Underwater Autonomous Robot Based on Multi-sensor Data Fusion," Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on , Vol.2, No., pp.9139-9143.
[3] SONY公司,http://www.sony.net/Fun/design/history/product/2000/ers-7.html
[4] HONDA公司,http://world.honda.com/ASIMO/technology/2011/
[5] SECOM公司,http://www.secom.co.jp/. last accessed February 2012.
[6] 移動機器人的研究現狀和發展問題,http://ren.csfqw.com/article-32553.html。last accessed May 2012.
[7] R. Simmons et al. “GRACE: An autonomous robot for the AAAI Robot Challenge”,AAAI Moble Robot Competition,pp.1-14, 2003.
[8] Jeong-Gwan Kang; Su-Yong An; Se-Young Oh; , "Navigation strategy for the service robot in the elevator environment," Control, Automation and Systems, 2007. ICCAS '07. International Conference on , Vol., No., pp.1092-1097, 17-20 Oct. 2007 .
[9] 曾宣僑,具人機互動能力之服務型機器人,成功大學工程科學所碩士論文,民國98年。
[10] 陳漢忠,智慧型搭乘電梯機器人,中央大學電機工程所碩士論文,民國98年。
[11] Japanese Office Building Employs Floor Cleaning Robot, http://techon.nikkeibp.co.jp/english/NEWS_EN/20081204/162358/ . last accessed November 2011.
[12] PIC16F877 datasheet, http://www.mircochip.com/. last accessed May 2011.
[13] 趙春棠,PIC單晶片學習秘笈以PIC16F877為例,全華科技,民國96年。
[14] hin232cp datasheet, http://www.intersil.com/content/dam/Intersil/documents/fn31/fn3138.pdf. last accessed October 2011.
[15] GP2D12 datasheet, http://www.robot-electronics.co.uk/datasheets/gp2y0a21.pdf. last accessed October 2011.
[16] D. G. Lowe. “Distinctive image features from scale-invariant keypoints” . International Journal of Computer Vision, November 2004.
[17] GPUSift, http://www.cs.unc.edu/~ccwu/siftgpu/
[18] Jolliffe, I.T. (2002). “Principal Component Analysis”, second edition (Springer).
[19] Bay, H., Tuytelaars, T., Gool, L.V. "SURF: Speeded Up Robust Features”, Proceedings of the ninth European Conference on Computer Vision, May 2006.
[20] Canadarm, http://www.nasa.gov/missions/shuttle/f_slowtrain.html.
[21] ABB, http://www.abb.com.tw/.
[22] 第三屆上銀智慧機器手實作競賽奪冠 成大李祖聖教授團隊,http://news.secr.ncku.edu.tw/files/14-1054-73048,r81-1.php.
[23] Microsoft, http://www.microsoft.com/zh-tw/default.aspx.
[24] 圖片來源,http://daman.cool3c.com/node/67211