簡易檢索 / 詳目顯示

研究生: 楊偉辰
Yang, Wei-Chen
論文名稱: 吡咯烷類離子液體做為鋰離子電池電解液與石墨電極的探討
Pyrrolidinium-based ionic liquids as electrolytes for lithium ion batteries using graphite electrodes
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 離子液體鋰離子電池石墨
外文關鍵詞: ionic liquid, lithium-ion battery, graphite
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用具有不同官能基的吡咯烷類離子液體,具有醚基的N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide與單純長鏈烷基的N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide,將兩者分別作為鋰離子電池電解質的電解液主體,電解質鋰鹽選用Lithium bis(trifluoromethanesulfonyl)imide,與天然石墨負極組成半電池,工作溫度設定為60 ℃,以循環伏安法、電化學阻抗法與充放電測試觀察官能基對負極半電池影響,像是SEI膜的形成、放電容量與庫倫效率。
    更進一步嘗試加入添加劑,期許達到提升效能或降低成本的功效,使用具有雙鍵的N-allyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide為修飾SEI膜並提升效能的添加劑,利用Sulfolane的價格低廉以降低成本與較低黏度以提升效能。

    Pyrrolidinium-based ionic liquids such as N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide with ether group and N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide with linear alkyl group are used as electrolytes for lithium-ion batteries with lithium bis(trifluoromethanesulfonyl)imide as the lithium salt and graphite as the electrode, working at elevated temperature of 60 ℃. Using cyclic voltammetry, the effects of functional groups on ionic liquids for graphite electrodes such as SEI films, discharge capacity and current efficiency were investigated by electrochemical impedance spectroscopy and charge-discharge cycle.
    Furthermore, N-allyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide with allyl group as a solid electrolyte interface forming agent and sulfolane with low vicosity and low price were used as electrolyte additives to improve the efficiency of discharge capacity and to reduce the cost of electrolytes, respectively.

    摘要 II Abstract III 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 鋰離子電池簡介 1 1-1-1 起源與發展 2 1-1-2 工作原理及組成 3 1-1-3 正極材料 5 1-1-4 負極材料 7 1-1-5 電解質 8 1-1-6 固體電解質界面膜(Solid Electrolyte Interphase, SEI) 9 1-2 離子液體 10 1-3 研究動機與目的 13 1-4 文獻回顧 14 第二章 實驗相關資料 16 2-1 實驗藥品種類及離子液體製備 16 2-2 實驗裝置與儀器 21 2-3 電化學實驗原理與方法 24 2-3-1 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 26 2-3-2 循環伏安法(Cyclic Voltammetry, CV) 29 2-3-3 電化學阻抗圖譜(Electrochemical Impedance Spectroscopy, EIS) 31 2-4 鈕扣電池組裝方式 33 第三章 結果與討論 34 3-1 離子液體性質評估 34 3-1-1 電位窗 34 3-1-2 導電度 36 3-1-3 熱穩定性 40 3-1-4 鋰離子的還原與氧化測試 42 3-2 與天然石墨負極組成半電池測試 44 3-2-1 半電池循環伏安法測試 45 3-2-2 半電池電化學阻抗測試 52 3-2-3 半電池充放電測試 58 3-3 [Pyr13*][TFSI]與Sulfolane的添加劑效應 69 3-3-1 添加劑選擇動機 70 3-3-2 添加劑性質 72 3-3-3 [Pyr1,2O1][TFSI]系統添加10 wt% [Pyr13*][TFSI]的效能影響 74 3-3-4 [Pyr14][TFSI]系統添加10 wt% [Pyr13*][TFSI]的效能影響 78 3-3-5 [Pyr1,2O1][TFSI]添加Solfolane的效能影響 82 3-3-6 [Pyr14][TFSI]添加Sulfolane的效能影響 90 第四章 結論 96 參考文獻 98

    [1] 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術, 五南圖書出版股份有限公司, 2010.
    [2] 陳海生, 工程熱物理縱橫, (2012).
    [3] J. FOROPOULOS, D. DESMARTEAU, Inorganic Chemistry, 23 (1984) 3720-3723.
    [4] K. Xu, Chemical Reviews, 104 (2004) 4303-4417.
    [5] J.S. Wilkes, Green Chemistry, 4 (2002) 73-80.
    [6] T. Torimoto, T. Tsuda, K. Okazaki, S. Kuwabata, Adv. Mater., 22 (2010) 1196-1221.
    [7] M.J. Earle, K.R. Seddon, Pure and Applied Chemistry, 72 (2000) 1391-1398.
    [8] M.J. Earle, J. Esperanca, M.A. Gilea, J.N.C. Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, Nature, 439 (2006) 831-834.
    [9] N.V. Plechkova, K.R. Seddon, Chemical Society reviews, 37 (2008) 123-150.
    [10] K. Seddon, A. Stark, M. Torres, Pure and Applied Chemistry, 72 (2000) 2275-2287.
    [11] S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, S. Protti, S. Lazzaroni, M. Fagnoni, A. Albini, Journal of Power Sources, 194 (2009) 45-50.
    [12] P.C. Howlett, D.R. MacFarlane, A.F. Hollenkamp, Electrochemical and Solid-State Letters, 7 (2004) A97.
    [13] H.-B. Han, K. Liu, S.-W. Feng, S.-S. Zhou, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, H. Matsumoto, M. Armand, Z.-B. Zhou, Electrochimica Acta, 55 (2010) 7134-7144.
    [14] A. Watarai, K. Kubota, M. Yamagata, T. Goto, T. Nohira, R. Hagiwara, K. Ui, N. Kumagai, Journal of Power Sources, 183 (2008) 724-729.
    [15] P. Reale, A. Fernicola, B. Scrosati, Journal of Power Sources, 194 (2009) 182-189.
    [16] M. Chai, Y. Jin, S. Fang, L. Yang, S.-i. Hirano, K. Tachibana, Electrochimica Acta, 66 (2012) 67-74.
    [17] Y. Jin, S. Fang, L. Yang, S.-i. Hirano, K. Tachibana, Journal of Power Sources, 196 (2011) 10658-10666.
    [18] S. Fang, L. Yang, J. Wang, H. Zhang, K. Tachibana, K. Kamijima, Journal of Power Sources, 191 (2009) 619-622.
    [19] G.H. Lane, P.M. Bayley, B.R. Clare, A.S. Best, D.R. MacFarlane, M. Forsyth, A.F. Hollenkamp, Journal of Physical Chemistry C, 114 (2010) 21775-21785.
    [20] T. Sugimoto, Y. Atsumi, M. Kikuta, E. Ishiko, M. Kono, M. Ishikawa, Journal of Power Sources, 189 (2009) 802-805.
    [21] H. Kim, Y. Ding, P.A. Kohl, Journal of Power Sources, 198 (2012) 281-286.
    [22] A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno, Journal of Power Sources, 174 (2007) 342-348.
    [23] M. Nádherná, J. Reiter, J. Moškon, R. Dominko, Journal of Power Sources, 196 (2011) 7700-7706.
    [24] S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, N. Terada, The Journal of Physical Chemistry B, 110 (2006) 10228-10230.
    [25] J. Reiter, M. Nadherna, Electrochimica Acta, 71 (2012) 22-26.
    [26] M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, Journal of Power Sources, 162 (2006) 658-662.
    [27] G.B. Appetecchi, M. Montanino, A. Balducci, S.F. Lux, M. Winterb, S. Passerini, Journal of Power Sources, 192 (2009) 599-605.
    [28] H. Nakagawa, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, K. Tatsumi, Journal of Power Sources, 174 (2007) 1021-1026.
    [29] Z. Zhang, H. Zhou, L. Yang, K. Tachibana, K. Kamijima, J. Xu, Electrochimica Acta, 53 (2008) 4833-4838.
    [30] D. Moosbauer, S. Zugmann, M. Amereller, H.J. Gores, Journal of Chemical and Engineering Data, 55 (2010) 1794-1798.
    [31] I.A. Profatilova, N.-S. Choi, S.W. Roh, S.S. Kim, Journal of Power Sources, 192 (2009) 636-643.
    [32] H. Zheng, B. Li, Y. Fu, T. Abe, Z. Ogumi, Electrochimica Acta, 52 (2006) 1556-1562.
    [33] Y.S. Yun, J.H. Kim, S.-Y. Lee, E.-G. Shim, D.-W. Kim, Journal of Power Sources, 196 (2011) 6750-6755.
    [34] Y. Katayama, M. Yukumoto, T. Miura, Electrochemical and Solid-State Letters, 6 (2003) A96.
    [35] X.-G. Sun, S. Dai, Electrochimica Acta, 55 (2010) 4618-4626.
    [36] S.F. Lux, M. Schmuck, G.B. Appetecchi, S. Passerini, M. Winter, A. Balducci, Journal of Power Sources, 192 (2009) 606-611.
    [37] M. Taggougui, M. Diaw, B. Carré, P. Willmann, D. Lemordant, Electrochimica Acta, 53 (2008) 5496-5502.
    [38] A. Lewandowski, A. Świderska-Mocek, Journal of Power Sources, 194 (2009) 601-609.
    [39] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, John Wiley & Sons, Inc., 2001.
    [40] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
    [41] 陳盈助, 電解液配方對鋰離子電池性能之研究, 國立成功大學化學工程研究所碩士論文, 2002.
    [42] T.-Y. Wu, S.-G. Su, K.-F. Lin, Y.-C. Lin, H.P. Wang, M.-W. Lin, S.-T. Gung, I.W. Sun, Electrochimica Acta, 56 (2011) 7278-7287.
    [43] M. Shamsipur, A.A.M. Beigi, M. Teymouri, S.M. Pourmortazavi, M. Irandoust, Journal of Molecular Liquids, 157 (2010) 43-50.
    [44] K. Kim, Y.-H. Cho, H.-C. Shin, Journal of Power Sources, 225 (2013) 113-118.
    [45] G.B. Appetecchi, G.T. Kim, M. Montanino, F. Alessandrini, S. Passerini, Journal of Power Sources, 196 (2011) 6703-6709.
    [46] R. Fong, U. Vonsacken, J. Dahn, Journal of The Electrochemical Society, 137 (1990) 2009-2013.

    下載圖示 校內:2016-08-12公開
    校外:2016-08-12公開
    QR CODE