| 研究生: |
董家豪 Tung, Chia-Hao |
|---|---|
| 論文名稱: |
探討微小核糖核酸microRNA-150-5p引起卵巢癌上皮間質轉換與轉移之機制與其臨床意義 Investigating the mechanisms underlying microRNA-150-5p-mediated epithelial-mesenchymal transition (EMT) and metastasis in ovarian cancer and its clinical significance |
| 指導教授: |
洪澤民
Hong, Tse-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 卵巢癌 、上皮間質轉換 、轉移 |
| 外文關鍵詞: | Ovarian cancer, epithelial-mesenchymal transition, metastasis |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前對於卵巢癌治療最大之挑戰為其極高的復發率。目前已知上皮細胞轉型成間質細胞 (epithelial-mesenchymal transition, EMT) 會造成癌細胞脫離原位而進入腹水中,這在卵巢癌復發過程中扮演著關鍵角色。近期許多團隊都證明,腫瘤之分子亞型為間質型的卵巢癌病人存活率較差。然而,目前對於其中機制仍有許多不清楚之處。我們的策略是希望找出同時在復發腫瘤(與原位腫瘤比)與間質型腫瘤(與非間質型腫瘤比)中表現量皆為上升的微小核糖核酸(microRNA)。藉由這個策略,我們找到一個新的生物標記microRNA-150-5p (miR-150-5p),並發現其表現量與配對之原位腫瘤相比,在16個復發的檢體中都有顯著性的上升。另外,分析其他研究團隊之病人檢體,也證明miR-150-5p在術後較早復發的檢體中表現量較多,並與卵巢癌病人較差的存活率有關。在卵巢癌細胞中抑制miR-150-5p,會明顯看到細胞爬行能力受到抑制,且細胞型態由間質細胞轉型成上皮細胞 (mesenchymal-epithelial transition, MET)。同時證實在卵巢癌中c-Myb為miR-150-5p之標靶基因,且miR-150-5p/c-Myb/Slug訊號在調控卵巢癌之上皮細胞轉型成間質細胞中扮演重要角色。更重要的是,在臨床上,MYB的表現量與卵巢癌病人較佳的預後有顯著相關性,且與SNAI2的表現量呈現負相關。miR-150-5p與Slug能夠抑制miR-506-3p的表現 (已知對上皮細胞轉型成間質細胞與轉移扮演抑制角色)。同時帶有高表現miR-150-5p與低表現miR-506-3p的卵巢癌病人呈現更差的預後。於低氧環境中培養卵巢癌細胞,會導致miR-150啟動子的活化,並誘發miR-150-5p表現。上述結果指出低氧誘發miR-150-5p表現上升,而藉由c-Myb-Slug路徑調控復發卵巢癌的惡化。未來透過抑制miR-150-5p防止卵巢癌復發與轉移,也許能成為一項新的治療策略。
Treatment of ovarian cancer (OvCa) remains a challenge due to its high recurrence rates. Epithelial-mesenchymal transition (EMT), which causes the detachment of cancer cells to the peritoneal fluid, plays a key role in relapse of OvCa. Recently, several groups demonstrated that patients with mesenchymal OvCa subtype had relatively poor overall survival. However, the mechanisms of this process remain largely unclear. Our strategy is to identify the potential miRNAs which are consistently elevated in both recurrent ovarian tumors (compared to primary tumors) and mesenchymal subtype tumors (compared to non-mesenchymal subtype) OvCa. Using this strategy, we identified a novel biomarker, microRNA-150-5p (miR-150-5p), that was significantly upregulated in 16 recurrent ovarian tumor tissues compared with their matched primary specimens. Analysis of cohorts from other two groups also proved that expression of miR-150-5p was associated with early-relapse and poor survival of ovarian cancer patients. Inhibition of miR-150-5p significantly inhibited the migration of ovarian cancer cells and induced a mesenchymal-epithelial transition (MET) phenotype. We demonstrated that c-Myb was a miR-150-5p target in ovarian cancer cells and miR-150-5p/c-Myb/Slug axis played important roles in regulating EMT of ovarian cancer cells. Expression of MYB was significantly correlated with good clinical outcome in ovarian cancer and negatively correlated with SNAI2 expression in clinical specimens. MiR-506-3p, known to be a EMT or metastasis suppressor, could be suppressed by miR-150-5p and Slug. High miR-150-5p and low miR-506-3p predicted much poorer outcomes of OvCa patinets. Hypoxia activated the miR-150-5p expression and its promoter activity in ovarian cancer. Collectively, these results suggest that hypoxia-induced upregulation of miR-150-5p mediated the progression of recurrent ovarian cancer by targeting the c-Myb-Slug pathway. Inhibition of miR-150-5p may serve as a new therapeutic strategy for preventing recurrence of ovarian cancer in the future.
Antony, J., Thiery, J.P., and Huang, R.Y. (2019). Epithelial-to-mesenchymal transition: lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys Biol 16, 041004.
Arora, H., Qureshi, R., and Park, W.Y. (2013). miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One 8, e64273.
Ashaie, M.A., and Chowdhury, E.H. (2016). Cadherins: The Superfamily Critically Involved in Breast Cancer. Curr Pharm Des 22, 616-638.
Bagnoli, M., Canevari, S., Califano, D., Losito, S., Maio, M.D., Raspagliesi, F., Carcangiu, M.L., Toffoli, G., Cecchin, E., Sorio, R., et al. (2016). Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study. Lancet Oncol 17, 1137-1146.
Bagnoli, M., De Cecco, L., Granata, A., Nicoletti, R., Marchesi, E., Alberti, P., Valeri, B., Libra, M., Barbareschi, M., Raspagliesi, F., et al. (2011). Identification of a chrXq27.3 microRNA cluster associated with early relapse in advanced stage ovarian cancer patients. Oncotarget 2, 1265-1278.
Baranwal, S., and Alahari, S.K. (2009). Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun 384, 6-11.
Bast, R.C., Jr., Klug, T.L., St John, E., Jenison, E., Niloff, J.M., Lazarus, H., Berkowitz, R.S., Leavitt, T., Griffiths, C.T., Parker, L., et al. (1983). A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 309, 883-887.
Benard, J., Da Silva, J., De Blois, M.C., Boyer, P., Duvillard, P., Chiric, E., and Riou, G. (1985). Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res 45, 4970-4979.
Bild, A.H., Yao, G., Chang, J.T., Wang, Q., Potti, A., Chasse, D., Joshi, M.B., Harpole, D., Lancaster, J.M., Berchuck, A., et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353-357.
Blechschmidt, K., Sassen, S., Schmalfeldt, B., Schuster, T., Hofler, H., and Becker, K.F. (2008). The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. Br J Cancer 98, 489-495.
Bowtell, D.D., Bohm, S., Ahmed, A.A., Aspuria, P.J., Bast, R.C., Jr., Beral, V., Berek, J.S., Birrer, M.J., Blagden, S., Bookman, M.A., et al. (2015). Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15, 668-679.
Bureau of Health Promotion, D.O.H., The Executive Yuan, Taiwan (2018). Cancer Registry Annual Report, 2016.
Camp, R.L., Dolled-Filhart, M., and Rimm, D.L. (2004). X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10, 7252-7259.
Cancer Genome Atlas Research, Network. (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615.
Cao, M., Hou, D., Liang, H., Gong, F., Wang, Y., Yan, X., Jiang, X., Wang, C., Zhang, J., Zen, K., et al. (2014). miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer 50, 1013-1024.
Chaffer, C.L., and Weinberg, R.A. (2011). A perspective on cancer cell metastasis. Science 331, 1559-1564.
Chakraborty, C., Sharma, A.R., Sharma, G., Doss, C.G.P., and Lee, S.S. (2017). Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine. Mol Ther Nucleic Acids 8, 132-143.
Chan, C.K., Pan, Y., Nyberg, K., Marra, M.A., Lim, E.L., Jones, S.J., Maar, D., Gibb, E.A., Gunaratne, P.H., Robertson, A.G., et al. (2016). Tumour-suppressor microRNAs regulate ovarian cancer cell physical properties and invasive behaviour. Open Biol 6.
Chebouti, I., Kasimir-Bauer, S., Buderath, P., Wimberger, P., Hauch, S., Kimmig, R., and Kuhlmann, J.D. (2017). EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy. Oncotarget 8, 48820-48831.
Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18, 997-1006.
Chen, X., Xu, X., Pan, B., Zeng, K., Xu, M., Liu, X., He, B., Pan, Y., Sun, H., and Wang, S. (2018). miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging (Albany NY) 10, 3421-3437.
Chong, G.O., Jeon, H.S., Han, H.S., Son, J.W., Lee, Y.H., Hong, D.G., Lee, Y.S., and Cho, Y.L. (2015). Differential MicroRNA Expression Profiles in Primary and Recurrent Epithelial Ovarian Cancer. Anticancer Res 35, 2611-2617.
Cordero, A.B., Kwon, Y., Hua, X., and Godwin, A.K. (2010). In vivo imaging and therapeutic treatments in an orthotopic mouse model of ovarian cancer. J Vis Exp.
Cormio, G., Rossi, C., Cazzolla, A., Resta, L., Loverro, G., Greco, P., and Selvaggi, L. (2003). Distant metastases in ovarian carcinoma. Int J Gynecol Cancer 13, 125-129.
Corrado, G., Palluzzi, E., Bottoni, C., Pietragalla, A., Salutari, V., Ghizzoni, V., Distefano, M., Scambia, G., and Ferrandina, G. (2019). New medical approaches in advanced ovarian cancer. Minerva Med 110, 367-384.
Darai, E., Scoazec, J.Y., Walker-Combrouze, F., Mlika-Cabanne, N., Feldmann, G., Madelenat, P., and Potet, F. (1997). Expression of cadherins in benign, borderline, and malignant ovarian epithelial tumors: a clinicopathologic study of 60 cases. Hum Pathol 28, 922-928.
Davidson, B., Trope, C.G., and Reich, R. (2012). Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol 2, 33.
Deng, J., Wang, L., Chen, H., Hao, J., Ni, J., Chang, L., Duan, W., Graham, P., and Li, Y. (2016). Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget 7, 55771-55788.
Dong, P., Xiong, Y., Yue, J., Hanley, S.J.B., and Watari, H. (2018). miR-34a, miR-424 and miR-513 inhibit MMSET expression to repress endometrial cancer cell invasion and sphere formation. Oncotarget 9, 23253-23263.
Elloul, S., Elstrand, M.B., Nesland, J.M., Trope, C.G., Kvalheim, G., Goldberg, I., Reich, R., and Davidson, B. (2005). Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103, 1631-1643.
Feng, J., Yang, Y., Zhang, P., Wang, F., Ma, Y., Qin, H., and Wang, Y. (2014). miR-150 functions as a tumour suppressor in human colorectal cancer by targeting c-Myb. J Cell Mol Med 18, 2125-2134.
Gebert, L.F.R., and MacRae, I.J. (2019). Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20, 21-37.
Godwin, A.K., Meister, A., O'Dwyer, P.J., Huang, C.S., Hamilton, T.C., and Anderson, M.E. (1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A 89, 3070-3074.
Goonewardene, T.I., Hall, M.R., and Rustin, G.J. (2007). Management of asymptomatic patients on follow-up for ovarian cancer with rising CA-125 concentrations. Lancet Oncol 8, 813-821.
Guo, Y.H., Wang, L.Q., Li, B., Xu, H., Yang, J.H., Zheng, L.S., Yu, P., Zhou, A.D., Zhang, Y., Xie, S.J., et al. (2016). Wnt/beta-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget 7, 42513-42526.
Gyorffy, B., Lanczky, A., Eklund, A.C., Denkert, C., Budczies, J., Li, Q., and Szallasi, Z. (2010). An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123, 725-731.
Gyorffy, B., Lanczky, A., and Szallasi, Z. (2012). Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer 19, 197-208.
He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531.
He, Y., Jiang, X., and Chen, J. (2014). The role of miR-150 in normal and malignant hematopoiesis. Oncogene 33, 3887-3893.
Hood, J.D., and Cheresh, D.A. (2002). Role of integrins in cell invasion and migration. Nature Reviews Cancer 2, 91-100.
Horiuchi, A., Imai, T., Shimizu, M., Oka, K., Wang, C., Nikaido, T., and Konishi, I. (2002). Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Res 22, 2697-2702.
Hsu, I.L., Chou, C.Y., Wu, Y.Y., Wu, J.E., Liang, C.H., Tsai, Y.T., Ke, J.Y., Chen, Y.L., Hsu, K.F., and Hong, T.M. (2016). Targeting FXYD2 by cardiac glycosides potently blocks tumor growth in ovarian clear cell carcinoma. Oncotarget 7, 62925-62938.
Huang, S., Chen, Y., Wu, W., Ouyang, N., Chen, J., Li, H., Liu, X., Su, F., Lin, L., and Yao, Y. (2013). miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One 8, e80707.
Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12, 99-110.
Imai, T., Horiuchi, A., Wang, C., Oka, K., Ohira, S., Nikaido, T., and Konishi, I. (2003). Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163, 1437-1447.
Jayson, G.C., Kohn, E.C., Kitchener, H.C., and Ledermann, J.A. (2014). Ovarian cancer. Lancet 384, 1376-1388.
Jia, L., Liu, W., Cao, B., Li, H., and Yin, C. (2016). MiR-507 inhibits the migration and invasion of human breastcancer cells through Flt-1 suppression. Oncotarget 7, 36743-36754.
Junttila, M.R., and de Sauvage, F.J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346-354.
Karlan, B.Y., Dering, J., Walsh, C., Orsulic, S., Lester, J., Anderson, L.A., Ginther, C.L., Fejzo, M., and Slamon, D. (2014). POSTN/TGFBI-associated stromal signature predicts poor prognosis in serous epithelial ovarian cancer. Gynecol Oncol 132, 334-342.
Kim, M.P., Evans, D.B., Wang, H., Abbruzzese, J.L., Fleming, J.B., and Gallick, G.E. (2009). Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 4, 1670-1680.
Konecny, G.E., Wang, C., Hamidi, H., Winterhoff, B., Kalli, K.R., Dering, J., Ginther, C., Chen, H.W., Dowdy, S., Cliby, W., et al. (2014). Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer Inst 106.
Kurrey, N.K., K, A., and Bapat, S.A. (2005). Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97, 155-165.
Laios, A., O'Toole, S., Flavin, R., Martin, C., Kelly, L., Ring, M., Finn, S.P., Barrett, C., Loda, M., Gleeson, N., et al. (2008). Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 7, 35.
Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
Lengyel, E. (2010). Ovarian cancer development and metastasis. Am J Pathol 177, 1053-1064.
Li, C., Du, X., Xia, S., and Chen, L. (2018). MicroRNA-150 inhibits the proliferation and metastasis potential of colorectal cancer cells by targeting iASPP. Oncol Rep 40, 252-260.
Li, H., Ouyang, R., Wang, Z., Zhou, W., Chen, H., Jiang, Y., Zhang, Y., Li, H., Liao, M., Wang, W., et al. (2016a). MiR-150 promotes cellular metastasis in non-small cell lung cancer by targeting FOXO4. Sci Rep 6, 39001.
Li, J., Ju, J., Ni, B., and Wang, H. (2016b). The emerging role of miR-506 in cancer. Oncotarget 7, 62778-62788.
Li, Y.J., Zhang, Y.X., Wang, P.Y., Chi, Y.L., Zhang, C., Ma, Y., Lv, C.J., and Xie, S.Y. (2012). Regression of A549 lung cancer tumors by anti-miR-150 vector. Oncol Rep 27, 129-134.
Lin, Y.C., Kuo, M.W., Yu, J., Kuo, H.H., Lin, R.J., Lo, W.L., and Yu, A.L. (2008). c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol Biol Evol 25, 2189-2198.
Liu, G., Sun, Y., Ji, P., Li, X., Cogdell, D., Yang, D., Parker Kerrigan, B.C., Shmulevich, I., Chen, K., Sood, A.K., et al. (2014). MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 axis in ovarian cancer. J Pathol 233, 308-318.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
Loret, N., Denys, H., Tummers, P., and Berx, G. (2019). The Role of Epithelial-to-Mesenchymal Plasticity in Ovarian Cancer Progression and Therapy Resistance. Cancers (Basel) 11, 838.
Lujambio, A., and Lowe, S.W. (2012). The microcosmos of cancer. Nature 482, 347-355.
Mainguene, C., Aillet, G., Kremer, M., and Chatal, J.F. (1986). Immunohistochemical study of ovarian tumors using the OC 125 monoclonal antibody as a basis for potential in vivo and in vitro applications. J Nucl Med Allied Sci 30, 19-22.
Masoumi Moghaddam, S., Amini, A., Morris, D.L., and Pourgholami, M.H. (2012). Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev 31, 143-162.
Mateescu, B., Batista, L., Cardon, M., Gruosso, T., de Feraudy, Y., Mariani, O., Nicolas, A., Meyniel, J.P., Cottu, P., Sastre-Garau, X., et al. (2011). miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17, 1627-1635.
Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.Y., Denay, G., Lee, J., Shi, W., Shyr, C., Tan, G., Worsley-Hunt, R., et al. (2016). JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44, D110-115.
Matulonis, U.A., Sood, A.K., Fallowfield, L., Howitt, B.E., Sehouli, J., and Karlan, B.Y. (2016). Ovarian cancer. Nat Rev Dis Primers 2, 16061.
Mendonsa, A.M., Na, T.Y., and Gumbiner, B.M. (2018). E-cadherin in contact inhibition and cancer. Oncogene 37, 4769-4780.
Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513-10518.
Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267-273.
Morris, V.A., Cummings, C.L., Korb, B., Boaglio, S., and Oehler, V.G. (2016). Deregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets. Mol Cell Biol 36, 559-573.
Mraz, M., Chen, L., Rassenti, L.Z., Ghia, E.M., Li, H., Jepsen, K., Smith, E.N., Messer, K., Frazer, K.A., and Kipps, T.J. (2014). miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood 124, 84-95.
Naora, H., and Montell, D.J. (2005). Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer 5, 355-366.
Narod, S. (2016). Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol 13, 255-261.
Noseda, A., Berens, M.E., Piantadosi, C., and Modest, E.J. (1987). Neoplastic cell inhibition with new ether lipid analogs. Lipids 22, 878-883.
Osada, R., Horiuchi, A., Kikuchi, N., Yoshida, J., Hayashi, A., Ota, M., Katsuyama, Y., Melillo, G., and Konishi, I. (2007). Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma. Hum Pathol 38, 1310-1320.
Osako, Y., Seki, N., Koshizuka, K., Okato, A., Idichi, T., Arai, T., Omoto, I., Sasaki, K., Uchikado, Y., Kita, Y., et al. (2017). Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer cell migration and invasion in esophageal squamous cell carcinoma. J Hum Genet 62, 935-944.
Pan, C.Y., Kuo, W.T., Chiu, C.Y., and Lin, W.C. (2017). Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application. Biomed Res Int 2017, 6037168.
Peng, Y., and Croce, C.M. (2016). The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1, 15004.
Pokhriyal, R., Hariprasad, R., Kumar, L., and Hariprasad, G. (2019). Chemotherapy Resistance in Advanced Ovarian Cancer Patients. Biomark Cancer 11, 1179299X19860815.
Pradeep, S., Kim, S.W., Wu, S.Y., Nishimura, M., Chaluvally-Raghavan, P., Miyake, T., Pecot, C.V., Kim, S.J., Choi, H.J., Bischoff, F.Z., et al. (2014). Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell 26, 77-91.
Sasisekharan, R., Shriver, Z., Venkataraman, G., and Narayanasami, U. (2002). Roles of heparan-sulphate glycosaminoglycans in cancer. Nature reviews Cancer 2, 521-528.
Shih, K.K., Qin, L.X., Tanner, E.J., Zhou, Q., Bisogna, M., Dao, F., Olvera, N., Viale, A., Barakat, R.R., and Levine, D.A. (2011). A microRNA survival signature (MiSS) for advanced ovarian cancer. Gynecol Oncol 121, 444-450.
Siegel, R.L., Miller, K.D., and Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin 66, 7-30.
Smith, B.N., and Bhowmick, N.A. (2016). Role of EMT in Metastasis and Therapy Resistance. J Clin Med 5, 17.
Smolle, E., Taucher, V., and Haybaeck, J. (2014). Malignant ascites in ovarian cancer and the role of targeted therapeutics. Anticancer Res 34, 1553-1561.
Srivastava, S.K., Bhardwaj, A., Singh, S., Arora, S., Wang, B., Grizzle, W.E., and Singh, A.P. (2011). MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32, 1832-1839.
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550.
Sun, J., Wang, D., Li, X., Yan, J., Yuan, X., and Wang, W. (2017). Targeting of miR-150 on Gli1 gene to inhibit proliferation and cell cycle of esophageal carcinoma EC9706. Cancer Biomark 21, 203-210.
Sun, W., Zhang, Z., Wang, J., Shang, R., Zhou, L., Wang, X., Duan, J., Ruan, B., Gao, Y., Dai, B., et al. (2016). MicroRNA-150 suppresses cell proliferation and metastasis in hepatocellular carcinoma by inhibiting the GAB1-ERK axis. Oncotarget 7, 11595-11608.
Sun, Y., Guo, F., Bagnoli, M., Xue, F.X., Sun, B.C., Shmulevich, I., Mezzanzanica, D., Chen, K.X., Sood, A.K., Yang, D., et al. (2015a). Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer. Chin J Cancer 34, 28-40.
Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., Rodriguez-Aguayo, C., Lopez-Berestein, G., Ji, P., Chen, K., et al. (2015b). MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol 235, 25-36.
Tan, T.Z., Miow, Q.H., Huang, R.Y., Wong, M.K., Ye, J., Lau, J.A., Wu, M.C., Bin Abdul Hadi, L.H., Soong, R., Choolani, M., et al. (2013). Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol Med 5, 1051-1066.
Tan, T.Z., Miow, Q.H., Miki, Y., Noda, T., Mori, S., Huang, R.Y., and Thiery, J.P. (2014). Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6, 1279-1293.
Tan, T.Z., Yang, H., Ye, J., Low, J., Choolani, M., Tan, D.S., Thiery, J.P., and Huang, R.Y. (2015). CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype. Oncotarget 6, 43843-43852.
Theriault, B.L., Shepherd, T.G., Mujoomdar, M.L., and Nachtigal, M.W. (2007). BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28, 1153-1162.
Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2, 442-454.
Torre, L.A., Trabert, B., DeSantis, C.E., Miller, K.D., Samimi, G., Runowicz, C.D., Gaudet, M.M., Jemal, A., and Siegel, R.L. (2018). Ovarian cancer statistics, 2018. CA Cancer J Clin 68, 284-296.
Tothill, R.W., Tinker, A.V., George, J., Brown, R., Fox, S.B., Lade, S., Johnson, D.S., Trivett, M.K., Etemadmoghadam, D., Locandro, B., et al. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 14, 5198-5208.
Tung, C.H., Kuo, L.W., Huang, M.F., Wu, Y.Y., Tsai, Y.T., Wu, J.E., Hsu, K.F., Chen, Y.L., and Hong, T.M. (2019). MicroRNA-150-5p promotes cell motility by inhibiting c-Myb-mediated Slug suppression and is a prognostic biomarker for recurrent ovarian cancer. Oncogene.
Vang, S., Wu, H.T., Fischer, A., Miller, D.H., MacLaughlan, S., Douglass, E., Comisar, L., Steinhoff, M., Collins, C., Smith, P.J., et al. (2013). Identification of ovarian cancer metastatic miRNAs. PLoS One 8, e58226.
Veatch, A.L., Carson, L.F., and Ramakrishnan, S. (1994). Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer 58, 393-399.
Vergara, D., Merlot, B., Lucot, J.P., Collinet, P., Vinatier, D., Fournier, I., and Salzet, M. (2010). Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 291, 59-66.
Verhaak, R.G., Tamayo, P., Yang, J.Y., Hubbard, D., Zhang, H., Creighton, C.J., Fereday, S., Lawrence, M., Carter, S.L., Mermel, C.H., et al. (2013). Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 123, 517-525.
Wang, F., Ren, X., and Zhang, X. (2015). Role of microRNA-150 in solid tumors. Oncol Lett 10, 11-16.
Wang, F., Zhao, X., Tan, W., Liu, W., Jin, Y., and Liu, Q. (2018). Early identification of recurrence in ovarian cancer: a comparison between the ovarian cancer metastasis index and CA-125 levels. PeerJ 6, e5912.
Wang, P.Y., Li, Y.J., Zhang, S., Li, Z.L., Yue, Z., Xie, N., and Xie, S.Y. (2010). Regulating A549 cells growth by ASO inhibiting miRNA expression. Mol Cell Biochem 339, 163-171.
Wang, W.H., Chen, J., Zhao, F., Zhang, B.R., Yu, H.S., Jin, H.Y., and Dai, J.H. (2014). MiR-150-5p suppresses colorectal cancer cell migration and invasion through targeting MUC4. Asian Pac J Cancer Prev 15, 6269-6273.
Wang, Y., Sheng, Q., Spillman, M.A., Behbakht, K., and Gu, H. (2012). Gab2 regulates the migratory behaviors and E-cadherin expression via activation of the PI3K pathway in ovarian cancer cells. Oncogene 31, 2512-2520.
Wu, Q., Jin, H., Yang, Z., Luo, G., Lu, Y., Li, K., Ren, G., Su, T., Pan, Y., Feng, B., et al. (2010). MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392, 340-345.
Xiao, C., Calado, D.P., Galler, G., Thai, T.H., Patterson, H.C., Wang, J., Rajewsky, N., Bender, T.P., and Rajewsky, K. (2007). MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146-159.
Yang, D., Sun, Y., Hu, L., Zheng, H., Ji, P., Pecot, C.V., Zhao, Y., Reynolds, S., Cheng, H., Rupaimoole, R., et al. (2013). Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23, 186-199.
Zhang, H.Y., Zheng, F.S., Yang, W., and Lu, J.B. (2017). The long non-coding RNA MIAT regulates zinc finger E-box binding homeobox 1 expression by sponging miR-150 and promoteing cell invasion in non-small-cell lung cancer. Gene 633, 61-65.
Zhang, J., Luo, N., Luo, Y., Peng, Z., Zhang, T., and Li, S. (2012). microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol 40, 747-756.
Zhang, L., Volinia, S., Bonome, T., Calin, G.A., Greshock, J., Yang, N., Liu, C.G., Giannakakis, A., Alexiou, P., Hasegawa, K., et al. (2008). Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 105, 7004-7009.
Zhang, N., Wei, X., and Xu, L. (2013). miR-150 promotes the proliferation of lung cancer cells by targeting P53. FEBS Lett 587, 2346-2351.
Zhang, R., Peng, Y., Wang, W., and Su, B. (2007). Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 17, 612-617.
Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., et al. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39, 133-144.
Zhang, Z., Zhuang, L., and Lin, C.P. (2019). Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. Int J Mol Sci 20.
Zhao, L., Wang, W., Xu, L., Yi, T., Zhao, X., Wei, Y., Vermeulen, L., Goel, A., Zhou, S., and Wang, X. (2018). Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer. Oncogene 38, 2305-2319.
Zhao, L., Wang, W., Xu, L., Yi, T., Zhao, X., Wei, Y., Vermeulen, L., Goel, A., Zhou, S., and Wang, X. (2019). Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer. Oncogene 38, 2305-2319. (Correction)
Zheng, B., Xi, Z., Liu, R., Yin, W., Sui, Z., Ren, B., Miller, H., Gong, Q., and Liu, C. (2018). The Function of MicroRNAs in B-Cell Development, Lymphoma, and Their Potential in Clinical Practice. Front Immunol 9, 936.
校內:2024-12-31公開