| 研究生: |
陳昱劭 Chen, Yu-Shao |
|---|---|
| 論文名稱: |
選擇性雷射燒結304L不鏽鋼加工參數及熱應力之研究 A study of the processing parameters and thermal stress on selective laser sintered 304L stainless steel |
| 指導教授: |
林震銘
Lin, Jehnming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 雷射燒結 、重疊率 、孔隙性 、熱應力 |
| 外文關鍵詞: | Laser sintering, Overlap rate, Porosity, Thermal stress |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討選擇性雷射燒結(SLS),於保護氣體環境及粉末預熱條件下,探討304L不鏽鋼粉末之燒結參數,觀察燒結試件表面微觀組織差異及孔隙率之研究,並進行多層堆疊之燒結實驗,藉由微觀組織及孔隙率之關係,找出最適合堆疊之加工參數。
燒結實驗部分,以波長1064nm之Q-switched Nd-YAG雷射加熱固定比例4:1(不銹鋼:紅銅)配置之金屬粉末,以雷射功率、掃描速度、掃描間距及預置粉末厚度為實驗參數,探討單層燒結時表面微觀組織及孔隙率之關係。並發現在多層堆疊時有翹曲現象產生,因此採取粉末預熱方式減少翹曲現象。於實驗結果顯示,雖然預置粉末越厚、掃描速度越慢、掃描間距越小有助於孔隙率下降,但過慢的掃描速度及過小的掃描間距,會造成堆疊試件發生破裂或分層現象。
數值分析部分,利用有限元素分析軟體ANSYS(APDL)以熱-結構間接耦合方式進行模擬,觀察雷射熱源掃描時於相鄰路徑之溫度變化關係,並討論在不同燒結參數下雷射引發之熱應力、殘留應力及薄板翹曲變形之影響,最後再將數值分析結果與實驗結果做比較討論。
This study focused on selective laser sintering (SLS) at the conditions with preheating and shielding gas. Experimentally with the sintering parameters for 304L stainless steel powder, the specimen surface microstructure and porosity were observed. It is going to find the optimum parameters for multilayer stack.
The sintering experiments were made with Q-switched Nd-YAG laser (a wavelength of 1064nm) in a ratio of 4: 1 (stainless steel to copper). The laser power, scanning speed, scanning space and preset powder thickness were selected as experimental parameters to investigate the relationship between morphology and porosity in laser sintering. It could find the warpage and cracking phenomenon. With the preheating the powder to reduce warpage, the overlap rate is a critical parameter.
Numerical analysis with finite element analysis software –ANSYS(APDL) to simulate the moving heat source in a non-linear transient model based on sequentially coupled thermo-mechanical field analysis, the thermal stress, deformation caused by different scanning parameters were simulated. Finally, the simulation results were compared with experimental results.
[1]Kruth J.P., “Binding mechanisms in selective laser sintering”, Rapid Prototyping Journal, v11(1), p26-36, 2005.
[2]Mercelis P., “Residual stresses in selective laser sintering”, Rapid Prototyping Journal, v12(5), p254-265, 2006.
[3]Hussein A., “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting”, Materials and Design, v52, p638-647, 2013.
[4]Ma L., “Temperature and stress analysis and simulation in fractal scanning-based laser sintering”, Journal of Advanced Manufacturing Technology, v34(9), p898-903, 2007.
[5]Fischer P., “Amodel for the interaction of near-infrared laser pulses withmetal powders in selective laser sintering”, Applied Physics A, v74(4), p467-474, 2002.
[6]Dingal S., “The application of Taguchi’s method in the experimental investigation of the laser sintering process”, Journal of Advanced Manufacturing Technology, v38(9), p904-914, 2008.
[7]Kempen K., “Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating”, Journal of Manufacturing Science and Engineering, v136(6), 2014.
[8]Savalani M.M., “Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium”, Rapid Prototyping Journal, v22(1), p115-122, 2016.
[9]Gao Y., “Research on measurement method of selective laser sintering (SLS)”, Journal for Light and Electron Optics, v119(13), p618-623, 2008.
[10]Furumoto T., “Study on Laser Consolidation of Metal Powder with Yb:fiber laser - Temperature Measurement of Laser Irradiation Area”, Journal of Laser Micro/Nanoengineering, v4, No.1, 2009.
[11]Steen W. M., “Laser material processing”, 4th Edition, Springer, London, p11-135, 2010.
[12]Scruby C.B., Drain L.E., “Laser ultrasonics techniques and applications”, Adam Hilger, New York,1990.
[13]黃文祥, “長脈衝雷射引發金屬薄板應力現象之研究”, 國立成功大學機械工程研究所碩士論, 2010.
[14]黃坤祥, “粉末冶金學”, 中華民國粉體及粉末冶金協會, 2014.
[15]五祖璁, “粉末冶金學”, 高立圖書有限公司, 2000.
[16]Randall M., “Sintering theory and practice”, Wiley Interscience, German, 1996.
[17]曾柏裕, “選擇性雷射燒結(SLS)溫度及孔隙性之研究”, 國立成功大學機械工程研究所碩士論文, 2014.
[18]Kruth J.P., “Lasers and materials in selective laser sintering”, Assembly Automation, v23(4), p 357-371. 2003.
[19]Adamson A.W., “Physical chemistry of surfaces”, 6th Edition, Wiley Interscience, New York, 1997.
[20]William D., “Fundamental of Materials Science and Engineering An Integrated Approach”, 2st, Wiley Interscience, 2004.
[21]金重勳, “工程材料”, 復文書局, 1996.
[22]顧宜, “複合材料”, 新文京開發出版股份有限公司, 2002.
[23]陳信吉, ANSYS入門, 全華圖書股份有限公司, 2009.
[24]ANSYS Mechanical Users Guide 15, ANSYS Inc., 2013.
[25]李坤洲, “雷射成型於薄板變形之分析及量測”, 國立成功大學機械工程研究所碩士論文, 2001.
[26]Yilbas B.S., “ Material response to thermal loading due to shor pulse laser heating”, Journal for Heat and Mass Transfer, v44(20), p3787-3798, 2001.
[27]Nickel A.H., “Thermal stresses and deposition patterns in layered manufacturing”, Materials Science and Engineering A, v317(1-2), p59-64, 2001.
[28]Zaeh M.F., “Investigations on residual stresses and deformations in selective laser melting”, Production Process, v4(1), p35-45, 2010.
[29]Martin III W.D., “Using image analysis to measure the porosity distribution of a porous pavement”, Construction and Building Materials, v48, p210-217, 2013.
[30]Kumar S., “Effect of bronze infiltration into laser sintered metallic parts”, Materials & Design, v28(2), p400-407, 2007.
[31]Muralia K., “Direct selective laser sintering of iron–graphite powder mixture”, Journal of Materials Processing Technology, v136(1-3), p179-185, 2003.
校內:2026-07-01公開