簡易檢索 / 詳目顯示

研究生: 羅常大元
Lo, Chang-Ta-Yuan
論文名稱: 傳統淨水流程中藍綠菌胜肽與毒素之處理成效與風險推估
Evaluation of the removal efficiency and risk of cyanopeptides and cyanotoxins in two conventional water treatment processes
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 112
中文關鍵詞: 混凝沉澱快濾單元去除效率藍綠菌毒素藍綠菌胜肽2-MIB最大可承受細胞濃度
外文關鍵詞: Coagulation, flocculation and sedimentation, Filtration, Cyanotoxins, Cyanopeptides, 2-MIB, Maximum Tolerable Concentration
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口及工業快速成長,農業、養殖業及民生家戶排放大量營養鹽進入水體中,導致水體優養化,加上全球暖化的持續,提供藍綠菌良好生長條件。藍綠菌大量生長將導致大量之二次代謝物,例如:臭味物質、藍綠菌毒素及藍綠菌胜肽等,使傳統淨水廠之處理難度增加。近年的研究中發現,儘管淨水廠原水中藍綠菌之濃度低,但仍然會累積於處理流程單元內,持續釋放藍綠菌代謝物污染水質。因此我們必須評估藍綠菌代謝物在淨水廠之處理成效,以保障民眾在飲用水之健康安全。
    本研究模擬鳳山及蘭潭淨水廠之操作條件進行實驗室實驗,發現混凝沉澱能有效去除水中藻細胞,並去除細胞內代謝物,但無法去除胞外代謝物;混凝沉澱去除效果受藻細胞大小影響,較大的微囊藻細胞去除效果較較小的擬魚腥藻細胞去除效果佳。在沉澱物中的藍綠菌仍能存活長達7天,並在第48小時開始釋出胞內2-MIB。而前加氯氧化雖然能抑制沉澱物中藻類活性,但將使藻細胞破裂,並加速胞內物質釋出,增加淨水處理之難度。在過濾實驗中,絲狀擬魚腥藻之去除效果較單顆粒微囊藻來得佳。於無前氧化的實驗中,發現截留於濾料內之擬魚腥藻在第60小時開始,因細胞破裂使胞內2-MIB釋出,並在第108小時測出流水濃度為進流水濃度之2.6倍。而在前加氯實驗組中,可以延長過濾管柱之濾程,但將使藻細胞破裂受損,胞內代謝物釋出進入水中,並直接貫穿過濾管柱。整體而言,在淨水廠中混凝、沉澱及過濾應視為一系列之處理程序,來達到最佳之去除效果。
    在鳳山及蘭潭淨水廠快濾池濾料中皆有藻類累積之情形,且經反洗程序後仍無法完全去除,在反洗程序前表層藻類數量高達105 cells/g,其中皆發現有藍綠菌之蹤跡,半數以上之藍綠菌具有產臭味及微囊藻毒素之可能性。在濾料中藍綠菌形態上發現以大型絲狀藻佔比較單顆粒藻來得高,證實過濾實驗中,擬魚腥藻之去除效果較微囊藻來得佳。
    根據過去淨水廠MC-LR去除效果發現,台灣6座淨水廠皆有MC-LR貫穿處理流程之情形,將各水廠之去除效果經計算求得不同覆蓋風險之淨水廠原水中最大可承受細胞數(MTC),在覆蓋風險50 %下27,703-252,000 cells/mL,在覆蓋風險90 %下3,078-28,000 cells/mL,提供各淨水廠作為原水管理工具之一。由於目前WHO僅針對MC-LR提出指引值,透過公式計算求得其餘藍綠菌胜肽之推估濃度規範值,其毒性大小排列為:MC-LR (1 µg/L )>AP-B(8.1 µg/L) >AP-A(970 µg/L) >>MG527(43,000 µg/L) >MG690(大於180,000 µg/L)。儘管目前在環境中所檢測到之濃度皆低於推估濃度值,但當水中同時具有MC-LR與AP-B時對水蚤具有協同毒性,因此未來仍需要做好水質控管,確保民眾之休憩及飲用水安全。

    Presence of cyanobacteria and their secondary metabolites, such as taste and odor compounds, cyanotoxins, and cyanopeptides in water resources is a public health issue. In conventional water treatment processes, the cyanobacteria may accumulate in the sediments of sedimentation tanks or in filters and release the intracellular metabolites into processed water. Therefore, removal of two cyanobacteria and their major metabolites in coagulation/flocculation (C/F) and sedimentation, and filtration processes were examined, simulating the operational parameters used in Feng-Shan and Lan-Tan water treatment plants. Because of the cell shape and size, Microcystis has a better removal efficiency by C/F and sedimentation, and Pseudanabaena is easier to be removed by the filtration process. Those retained cells may rupture and release intercellular metabolites after two days in sludge or three days in the filter columns. Pre-chlorination can inhibit the algae activity and prevent their growth in sediment and filter material and enhance cell removal efficiency in sedimentation processes. However, that also causes cells to break and release the intercellular metabolites into water.
    Maximum tolerable concentration (MTC) of Microcystis under different confidence intervals in Taiwan WTPs was calculated based on the removal efficiency and cell quota in different water treatment plants (WTPs) in Taiwan. The method was also used to evaluate the risk of cyanopeptides in this study. The MTC is 3×103 - 2×104 cells/mL (covering 90% risk level), and 2×104 - 2×105 cells/mL (50%) if compared with the guideline value of WHO for MC-LR. In addition, the order of toxicity transformed from IC50 to guideline value is: MC-LR (1 µg/L)>AP-B (8.1 µg/L) >AP-A(970 µg/L) >>MG527(43,000 µg/L) >MG690(> 180,000 µg/L). Since the WHO only proposes a guideline value (GV) for MC-LR, the estimated concentration GV of these cyanopeptides can be one of the strategies for water management. Although the concentrations currently detected in the environment were much lower than the estimated concentrations, the synergistic toxicity should not be ignored.

    摘要 i Extended Abstract iii 致謝 xii 目錄 xiii 圖目錄 xvii 表目錄 xxi 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 藍綠菌藻華之危害 3 2-1-1 藍綠菌藻華之發生與影響 3 2-1-2 臭味物質(Taste & Odor Compound) 4 2-1-3 藍綠菌藻毒(Cyanotoxins) 6 2-1-4 藍綠菌胜肽(Cyanopeptides) 11 2-2 傳統淨水處理流程對藍綠菌處理之效能 18 2-2-1 前氧化(Pre-oxidation) 19 2-2-2 混凝/膠凝及沉澱(Coagulation/Flocculation and Sedimentation) 20 2-2-3 過濾(Filtration) 21 2-2-4 消毒(Disinfection) 22 2-2-5 藍綠菌在淨水流程之細胞累積及毒素釋放 22 2-3 藍綠菌毒素及胜肽物質之健康風險 24 2-3-1 暴露途徑及健康影響 24 2-3-2 風險評估及風險管理 25 2-4 台灣環境水體現況 30 2-4-1 台灣湖庫優養化程度 30 2-4-2 藍綠菌胜肽物質在湖庫及淨水廠流佈之情形 30 第三章 實驗設備與方法 33 3-1 實驗架構流程 33 3-2 藍綠菌培養 34 3-2-1 藍綠菌來源 34 3-2-2 藍綠菌培養方法 35 3-3 藍綠菌計數 35 3-3-1 微囊藻及擬魚腥藻計數 36 3-3-2 細胞計數盤 36 3-4 台灣環境水體及淨水處理場樣品採集 38 3-5 樣品萃取流程 39 3-5-1 固相萃取法(Solid Phase Extraction, SPE) 39 3-5-2 濾料中藻體萃取方式 43 3-6 藻類細胞活性及完整性測定 44 3-6-1 實驗試劑與設備 44 3-6-2 實驗步驟 45 3-7 模擬傳統淨水廠之混凝、沉澱及過濾單元實驗 46 3-7-1 淨水廠之水質參數 47 3-7-2 藻華原水配製 49 3-7-3 瓶杯試驗 50 3-7-4 快濾試驗 51 3-8 氣相層析質譜分析條件 55 3-8-1 實驗試劑與設備 56 3-8-2 實驗步驟 56 3-8-3 2-MIB之定性、定量及濃度計算 57 3-9 液相層析串聯質譜儀 59 3-9-1 實驗試劑與設備 60 3-10 風險推估 61 3-10-1 藍綠菌胜肽物質在飲用水中之推估濃度規範值 61 3-10-2 淨水廠之原水藍綠菌數風險評估 62 第四章 結果與討論 63 4-1 混凝沉澱實驗 63 4-1-1 鳳山淨水廠 63 4-1-2 蘭潭淨水廠 71 4-1-3 綜合討論 77 4-2 過濾實驗 80 4-2-1 鳳山淨水廠 80 4-2-2 蘭潭淨水廠 82 4-2-3 鳳山與蘭潭淨水廠快濾池過濾介質藻類調查 84 4-2-4 綜合討論 88 4-3 風險推估 91 4-3-1 淨水處理廠之處理效能 91 4-3-2 淨水廠處理之警戒風險 92 4-3-3 藍綠菌胜肽之推估規範濃度值 95 第五章 結論與建議 98 5-1 結論 98 5-2 建議 100 參考文獻 101

    Acero, J. L., Rodriguez, E., & Meriluoto, J. (2005). Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Research, 39(8), 1628-1638.
    Ahmad, S., Saleem, M., Riaz, N., Lee, Y. S., Diri, R., Noor, A., . . . Elsebai, M. F. (2020). The natural polypeptides as significant elastase inhibitors. Frontiers in Pharmacology, 11, 688.
    Almuhtaram, H., Cui, Y., Zamyadi, A., & Hofmann, R. (2018). Cyanotoxins and Cyanobacteria Cell Accumulations in Drinking Water Treatment Plants with a Low Risk of Bloom Formation at the Source. Toxins, 10(11), 430. Retrieved from https://www.mdpi.com/2072-6651/10/11/430
    Bober, B., & Bialczyk, J. (2017). Determination of the toxicity of the freshwater cyanobacterium Woronichinia naegeliana (Unger) Elenkin. Journal of Applied Phycology, 29(3), 1355-1362.
    Bomo, A. M., Stevik, T. K., Hovi, I., & Hanssen, J. F. (2004). Bacterial removal and protozoan grazing in biological sand filters. Journal of environmental quality, 33(3), 1041-1047.
    Briand, J.-F., Jacquet, S., Bernard, C., & Humbert, J.-F. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary research, 34(4), 361-377.
    Briley, D. S., & Knappe, D. R. (2002). Optimizing ferric sulfate coagulation of algae with streaming current measurements. Journal‐American Water Works Association, 94(2), 80-90.
    Bruce, D., Westerhoff, P., & Brawley-Chesworth, A. (2002). Removal of 2-methylisoborneol and geosmin in surface water treatment plants in Arizona. Journal of Water Supply: Research and Technology—AQUA, 51(4), 183-198.
    Buratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., & Funari, E. (2017). Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of toxicology, 91(3), 1049-1130.
    Capuzzo, E., Stephens, D., Silva, T., Barry, J., & Forster, R. M. (2015). Decrease in water clarity of the southern and central North Sea during the 20th century. Global change biology, 21(6), 2206-2214.
    Carmichael, W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of applied bacteriology, 72(6), 445-459.
    Cheng, Y. S., Yue, Z., Irvin, C. M., Kirkpatrick, B., & Backer, L. C. (2007). Characterization of Aerosols Containing Microcystin. Marine drugs, 5(4), 136-150. Retrieved from https://www.mdpi.com/1660-3397/5/4/136
    Cheremisinoff, P. N. (2019). Handbook of water and wastewater treatment technology: Routledge.
    Chorus, I. (2005). Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries: Fed. Environmental Agency.
    Chorus, I., Fastner, J., & Welker, M. (2021). Cyanobacteria and Cyanotoxins in a Changing Environment: Concepts, Controversies, Challenges. Water, 13(18), 2463. Retrieved from https://www.mdpi.com/2073-4441/13/18/2463
    Chorus, I., & Welker, M. (2021). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management: Taylor & Francis.
    Christensen, V. G., & Khan, E. (2020). Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Science of the total environment, 736, 139515.
    Daly, R. I., Ho, L., & Brookes, J. D. (2007). Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environmental science & technology, 41(12), 4447-4453.
    Dietrich, D. R., Fischer, A., Michel, C., & Höger, S. J. (2008). Toxin mixture in cyanobacterial blooms–a critical comparison of reality with current procedures employed in human health risk assessment. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs (pp. 885-912): Springer.
    Dinh, Q. T., Munoz, G., Simon, D. F., Duy, S. V., Husk, B., & Sauvé, S. (2021). Stability issues of microcystins, anabaenopeptins, anatoxins, and cylindrospermopsin during short-term and long-term storage of surface water and drinking water samples. Harmful Algae, 101, 101955.
    Edwards, C., Beattie, K. A., Scrimgeour, C. M., & Codd, G. A. (1992). Identification of anatoxin-a in benthic cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. Toxicon, 30(10), 1165-1175.
    Egli, C. M., Natumi, R. S., Jones, M. R., & Janssen, E. M.-L. (2020). Inhibition of Extracellular Enzymes Exposed to Cyanopeptides. CHIMIA International Journal for Chemistry, 74(3), 122-128.
    Falconer, I. R. (1999). An overview of problems caused by toxic blue–green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology: An International Journal, 14(1), 5-12.
    Fan, J., Rao, L., Chiu, Y.-T., & Lin, T.-F. (2016). Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis. Water Research, 102, 394-404.
    Fawell, J., Mitchell, R., Everett, D., & Hill, R. (1999). The toxicity of cyanobacterial toxins in the mouse: I microcystin-LR. Human & experimental toxicology, 18(3), 162-167.
    Fischer, W. J., & Dietrich, D. R. (2000). Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicology and applied pharmacology, 164(1), 73-81.
    Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical reviews in toxicology, 38(2), 97-125.
    Grützmacher, G., Böttcher, G., Chorus, I., & Bartel, H. (2002). Removal of microcystins by slow sand filtration. Environmental Toxicology: An International Journal, 17(4), 386-394.
    Gums, J. G. (1992). Use of ACE inhibitors in the treatment of cardiovascular disease. American Pharmacy(6), 62-70.
    Harada, K.-i., Fujii, K., Shimada, T., Suzuki, M., Sano, H., Adachi, K., & Carmichael, W. W. (1995). Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacteriumAnabaena flos-aquae NRC 525-17. Tetrahedron letters, 36(9), 1511-1514.
    He, X., Liu, Y.-L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., . . . Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 54, 174-193.
    Henderson, R., Parsons, S. A., & Jefferson, B. (2008). The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Research, 42(8-9), 1827-1845.
    Hiskia, A. E., Triantis, T. M., Antoniou, M. G., Kaloudis, T., & Dionysiou, D. D. (2020). Water Treatment for purification from cyanobacteria and cyanotoxins.
    Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574(7780), 667-670.
    Ho, L., Dreyfus, J., Boyer, J., Lowe, T., Bustamante, H., Duker, P., . . . Newcombe, G. (2012). Fate of cyanobacteria and their metabolites during water treatment sludge management processes. Science of the total environment, 424, 232-238.
    Ho, L., Meyn, T., Keegan, A., Hoefel, D., Brookes, J., Saint, C. P., & Newcombe, G. (2006). Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Research, 40(4), 768-774.
    Hoeger, S. J., Hitzfeld, B. C., & Dietrich, D. R. (2005). Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicology and applied pharmacology, 203(3), 231-242.
    Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-483.
    Ishida, K., Kato, T., Murakami, M., Watanabe, M., & Watanabe, M. F. (2000). Microginins, zinc metalloproteases inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron, 56(44), 8643-8656.
    Itou, Y., Suzuki, S., Ishida, K., & Murakami, M. (1999). Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). Bioorganic & medicinal chemistry letters, 9(9), 1243-1246.
    Izaguirre, G., & Taylor, W. (2004). A guide to geosmin-and MIB-producing cyanobacteria in the United States. Water Science and Technology, 49(9), 19-24.
    Janssen, E. M.-L. (2019). Cyanobacterial peptides beyond microcystins–A review on co-occurrence, toxicity, and challenges for risk assessment. Water Research, 151, 488-499.
    Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., . . . Beach, D. G. (2021). CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Research, 196, 117017.
    Juttner, F., & Watson, S. B. (2007). Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Applied and environmental microbiology, 73(14), 4395-4406.
    Keijola, A.-M., Himberg, K., Esala, A.-L., Sivonen, K., & Hiis‐Virta, L. (1988). Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot‐scale experiments. Toxicity assessment, 3(5), 643-656.
    Lawton, L. A., Metcalf, J. S., Žegura, B., Junek, R., Welker, M., Törökné, A., & Bláha, L. (2021). Laboratory analysis of cyanobacterial toxins and bioassays. In Toxic Cyanobacteria in Water (pp. 745-800): CRC Press.
    Lenz, K. A., Miller, T. R., & Ma, H. (2019). Anabaenopeptins and cyanopeptolins induce systemic toxicity effects in a model organism the nematode Caenorhabditis elegans. Chemosphere, 214, 60-69.
    Lin, P.-H., Lion, L. W., & Weber-Shirk, M. L. (2012). Enhanced particle capture through aluminum hydroxide addition to pores in sand media. Journal of Environmental Engineering, 138(1), 8-16.
    Lodin-Friedman, A., & Carmeli, S. (2018). Microginins from a Microcystis sp. Bloom Material Collected from the Kishon Reservoir, Israel. Marine drugs, 16(3), 78. Retrieved from https://www.mdpi.com/1660-3397/16/3/78
    Lu, K.-Y., Chiu, Y.-T., Burch, M., Senoro, D., & Lin, T.-F. (2019). A molecular-based method to estimate the risk associated with cyanotoxins and odor compounds in drinking water sources. Water Research, 164, 114938.
    Ma, J., Lei, G., & Fang, J. (2007). Effect of algae species population structure on their removal by coagulation and filtration processes–a case study. Journal of Water Supply: Research and Technology—AQUA, 56(1), 41-54.
    Mazur-Marzec, H., Błaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Toruńska-Sitarz, A., . . . Tammela, P. (2015). Baltic cyanobacteria–a source of biologically active compounds. European Journal of Phycology, 50(3), 343-360.
    McQuaid, N., Zamyadi, A., Prévost, M., Bird, D., & Dorner, S. (2011). Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. Journal of Environmental Monitoring, 13(2), 455-463.
    Merel, S., Clément, M., & Thomas, O. (2010). State of the art on cyanotoxins in water and their behaviour towards chlorine. Toxicon, 55(4), 677-691.
    Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment international, 59, 303-327.
    Monteiro, P. R., do Amaral, S. C., Siqueira, A. S., Xavier, L. P., & Santos, A. V. (2021). Anabaenopeptins: What We Know So Far. Toxins, 13(8), 522. Retrieved from https://www.mdpi.com/2072-6651/13/8/522
    Neumann, U., Forchert, A., Flury, T., & Weckesser, J. (1997). Microginin FR1, a linear peptide from a water bloom of Microcystis species. FEMS microbiology letters, 153(2), 475-478.
    Núñez-Vázquez, E. J., Gárate-Lizarraga, I., Band-Schmidt, C. J., Cordero-Tapia, A., Lopez-Cortes, D. J., Sandoval, F. E. H., . . . Bustillos-Guzman, J. J. (2011). Impact of harmful algal blooms on wild and cultured animals in the Gulf of California. Journal of Environmental Biology, 32(4), 413.
    Osswald, J., Rellán, S., Gago, A., & Vasconcelos, V. (2007). Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environment international, 33(8), 1070-1089.
    Park, S.-M., Heo, T.-Y., Park, N.-B., Na, K.-J., Jun, H.-B., & Jung, J.-Y. (2010). Application of air stripping to powdered activated carbon adsorption of geosmin and 2-methylisoborneol. Journal of Water Supply: Research and Technology—AQUA, 59(8), 492-500.
    Pawlik-Skowrońska, B., & Bownik, A. (2022). Synergistic toxicity of some cyanobacterial oligopeptides to physiological activities of Daphnia magna (Crustacea). Toxicon, 206, 74-84.
    Pestana, C. J., Lawton, L. A., & Kaloudis, T. (2020). Removal and/or destruction of cyanobacterial taste and odour compounds by conventional and advanced oxidation processes. Water treatment for purification from Cyanobacteria and cyanotoxins, 207-230.
    Pouria, S., de Andrade, A., Barbosa, J., Cavalcanti, R., Barreto, V., Ward, C., . . . Codd, G. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet, 352(9121), 21-26.
    Rastogi, R. P., Sinha, R. P., & Incharoensakdi, A. (2014). The cyanotoxin-microcystins: current overview. Reviews in Environmental Science and Bio/Technology, 13(2), 215-249.
    Runnegar, M., Berndt, N., Kong, S.-M., Lee, E. Y., & Zhang, L. (1995). In vivo and in vitro binding of microcystin to protein phosphatase 1 and 2A. Biochemical and biophysical research communications, 216(1), 162-169.
    Sano, T., Usui, T., Ueda, K., Osada, H., & Kaya, K. (2001). Isolation of new protein phosphatase inhibitors from two cyanobacteria species, Planktothrix spp. Journal of natural products, 64(8), 1052-1055.
    Santori, N., Buratti, F. M., Scardala, S., Dorne, J.-L. C., & Testai, E. (2020). In vitro detoxication of microcystins in human samples: variability among variants with different hydrophilicity and structure. Toxicology Letters, 322, 131-139.
    Schmidt, W., Bornmann, K., Imhof, L., Mankiewicz, J., & Izydorczyk, K. (2008). Assessing drinking water treatment systems for safety against cyanotoxin breakthrough using maximum tolerable values. Environmental Toxicology: An International Journal, 23(3), 337-345.
    Schmidt, W., Willmitzer, H., Bornmann, K., & Pietsch, J. (2002). Production of drinking water from raw water containing cyanobacteria—pilot plant studies for assessing the risk of microcystin breakthrough. Environmental Toxicology: An International Journal, 17(4), 375-385.
    Schreuder, H., Liesum, A., Lönze, P., Stump, H., Hoffmann, H., Schiell, M., . . . Kallus, C. (2016). Isolation, co-crystallization and structure-based characterization of anabaenopeptins as highly potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa). Scientific reports, 6(1), 1-9.
    Sedmak, B., Carmeli, S., & Eleršek, T. (2008). “Non-toxic” cyclic peptides induce lysis of cyanobacteria—an effective cell population density control mechanism in cyanobacterial blooms. Microbial ecology, 56(2), 201-209.
    Sha, J., Xiong, H., Li, C., Lu, Z., Zhang, J., Zhong, H., . . . Yan, B. (2021). Harmful algal blooms and their eco-environmental indication. Chemosphere, 274, 129912.
    Shang, L., Feng, M., Xu, X., Liu, F., Ke, F., & Li, W. (2018). Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant. Toxins, 10(1), 26. Retrieved from https://www.mdpi.com/2072-6651/10/1/26
    Smith, J. L., Boyer, G. L., & Zimba, P. V. (2008). A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture, 280(1-4), 5-20.
    Spoof, L., Błaszczyk, A., Meriluoto, J., Cegłowska, M., & Mazur-Marzec, H. (2015). Structures and activity of new anabaenopeptins produced by Baltic Sea cyanobacteria. Marine drugs, 14(1), 8.
    Stewart, A. K., Ravindra, R., Van Wagoner, R. M., & Wright, J. L. (2018). Metabolomics-guided discovery of microginin peptides from cultures of the cyanobacterium Microcystis aeruginosa. Journal of natural products, 81(2), 349-355.
    Sun, F., Pei, H.-Y., Hu, W.-R., & Ma, C.-X. (2012). The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes. Chemical Engineering Journal, 193, 196-202.
    Svirčev, Z., Drobac, D., Tokodi, N., Mijović, B., Codd, G. A., & Meriluoto, J. (2017). Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of toxicology, 91(2), 621-650.
    Teixeira, M. R., Sousa, V., & Rosa, M. J. (2010). Investigating dissolved air flotation performance with cyanobacterial cells and filaments. Water Research, 44(11), 3337-3344.
    Trainer, V. L., & Hardy, F. J. (2015). Integrative Monitoring of Marine and Freshwater Harmful Algae in Washington State for Public Health Protection. Toxins, 7(4), 1206-1234. Retrieved from https://www.mdpi.com/2072-6651/7/4/1206
    Ujvárosi, A. Z., Hercog, K., Riba, M., Gonda, S., Filipič, M., Vasas, G., & Žegura, B. (2020). The cyanobacterial oligopeptides microginins induce DNA damage in the human hepatocellular carcinoma (HepG2) cell line. Chemosphere, 240, 124880.
    US EPA. (2022). Determination of Cyanotoxins in Drinking and Ambient Freshwaters-Sample Collection. Retrieved from https://www.epa.gov/cyanohabs/determination-cyanotoxins-drinking-and-ambient-freshwaters
    Van Apeldoorn, M. E., Van Egmond, H. P., Speijers, G. J., & Bakker, G. J. (2007). Toxins of cyanobacteria. Molecular nutrition & food research, 51(1), 7-60.
    Viaggiu, E., Melchiorre, S., Volpi, F., Di Corcia, A., Mancini, R., Garibaldi, L., . . . Bruno, M. (2004). Anatoxin‐a toxin in the cyanobacterium Planktothrix rubescens from a fishing pond in northern Italy. Environmental Toxicology: An International Journal, 19(3), 191-197.
    Watson, S., Charlton, M., Rao, Y., Howell, T., Ridal, J., Brownlee, B., . . . Millard, S. (2007). Off flavours in large waterbodies: physics, chemistry and biology in synchrony. Water Science and Technology, 55(5), 1-8.
    Watson, S. B. (2004). Aquatic taste and odor: a primary signal of drinking-water integrity. Journal of Toxicology and Environmental Health, Part A, 67(20-22), 1779-1795.
    Welker, M., & Von Döhren, H. (2006). Cyanobacterial peptides—nature's own combinatorial biosynthesis. FEMS microbiology reviews, 30(4), 530-563.
    WHO. (2004). Guidelines for drinking-water quality (Vol. 1): World Health Organization.
    Wiegand, C., & Pflugmacher, S. (2005). Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and applied pharmacology, 203(3), 201-218.
    Wörmer, L., Huerta-Fontela, M. a., Cirés, S., Carrasco, D., & Quesada, A. (2010). Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. Environmental science & technology, 44(8), 3002-3007.
    Xiao, X., Agustí, S., Pan, Y., Yu, Y., Li, K., Wu, J., & Duarte, C. M. (2019). Warming amplifies the frequency of harmful algal blooms with eutrophication in Chinese coastal waters. Environmental science & technology, 53(22), 13031-13041.
    Xu, H., Paerl, H., Qin, B., Zhu, G., Hall, N., & Wu, Y. (2015). Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environmental science & technology, 49(2), 1051-1059.
    Zafrir-Ilan, E., & Carmeli, S. (2010). Eight novel serine proteases inhibitors from a water bloom of the cyanobacterium Microcystis sp. Tetrahedron, 66(47), 9194-9202.
    Zamyadi, A., Dorner, S., Sauvé, S., Ellis, D., Bolduc, A., Bastien, C., & Prévost, M. (2013). Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Research, 47(8), 2689-2700.
    Zamyadi, A., Fan, Y., Daly, R. I., & Prévost, M. (2013). Chlorination of Microcystis aeruginosa: toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Research, 47(3), 1080-1090.
    Zamyadi, A., MacLeod, S. L., Fan, Y., McQuaid, N., Dorner, S., Sauvé, S., & Prévost, M. (2012). Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Research, 46(5), 1511-1523.
    Zastepa, A., Pick, F. R., Blais, J. M., & Saleem, A. (2015). Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry. Analytica chimica acta, 872, 26-34.
    Zervou, S.-K., Gkelis, S., Kaloudis, T., Hiskia, A., & Mazur-Marzec, H. (2020). New microginins from cyanobacteria of Greek freshwaters. Chemosphere, 248, 125961.
    Zong, W., Sun, F., & Sun, X. (2013). Oxidation by-products formation of microcystin-LR exposed to UV/H2O2: toward the generative mechanism and biological toxicity. Water Research, 47(9), 3211-3219.
    張新嘉. (2021). 水中七種藍綠菌胜肽與毒素分析技術建立與調查研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/fmucnm
    經濟部水利署. (2021). 水庫有害藻類監測技術創新與提升新型藻類毒素處理評析研究.
    翁水珠. (2022). 氯及過錳酸鉀氧化水源中藍綠菌胜肽 Anabaenopeptin-B 及 Microginin 527之研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/bb4372
    臺灣行政院環境保護署. (2021). <2021年環境水質監測年報.pdf>.

    無法下載圖示 校內:2027-08-26公開
    校外:2027-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE