| 研究生: |
林雍 Lin, Yong |
|---|---|
| 論文名稱: |
應用雷射箔材列印技術於溫度監測型智慧金屬元件之研究與開發 Fabrication of Smart Metallic Components for In-situ Temperature Monitoring by Laser Foil Printing Additive Manufacturing |
| 指導教授: |
洪嘉宏
Hung, Chia-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 積層製造 、雷射箔材列印技術 、316L不銹鋼 、智慧型金屬元件 、負溫度係數熱敏電阻 |
| 外文關鍵詞: | additive manufacturing, laser foil printing, 316L stainless steel, smart metallic components, NTC thermistor |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對金屬積層製造過程中即時溫度監測之需求,提出結合自主開發之雷射金屬箔材積層製造(Laser Foil Printing, LFP)系統與嵌入式感測器之智慧型金屬元件製程。以316L不銹鋼為材料,於LFP疊層過程中嵌入薄膜型負溫度係數熱敏電阻(NTC thermistor)作為溫度感測元件,並設計保護層以降低列印過程中的熱衝擊影響;進一步探討保留與移除熱敏電阻表面薄膜對感測效能之差異。為優化製程,首先運用有限元素法(FEM)建立三維熱傳模型,模擬多道次熔池行為,並與實驗熔池數據比對,結果顯示偏差低於10%,驗證模擬之準確性。藉由單道實驗結合機器學習演算法,建立最佳化製程參數圖,成功製備緻密度高達99.9%的高品質金屬元件。感測效能驗證顯示,移除保護薄膜之熱敏電阻於單層列印中可量測到最高溫度116.3 °C,較保留薄膜者之71.6 °C顯著提升,展現更佳的熱傳效率與感測靈敏度。此外,系統整合藍牙模組,實現溫度數據即時無線傳輸至智慧型裝置,達成加工過程之遠程監控。本研究驗證LFP技術結合嵌入式感測設計應用於功能性智慧金屬元件之可行性,為智慧製造與高性能金屬功能元件之開發提供重要技術參考。
This study presents the development of smart metallic components with embedded sensing functionality using a self-developed Laser Foil Printing (LFP) additive manufacturing system and 316L stainless steel. Thin-film negative temperature coefficient (NTC) thermistors were embedded within the metal structure for in-situ temperature monitoring, and a protective layer was designed to reduce thermal stress during the printing process. To evaluate the effect of the thermistor's surface film on sensing performance, two configurations (with and without the film) were compared. A process map of optimal parameters was generated through single-track experiments combined with machine learning algorithms, successfully achieving high-density parts with a relative density of 99.9%. Furthermore, a three-dimensional multi-track thermal model was established using the Finite Element Method (FEM), and the simulation results showed a deviation of less than 10% compared with experimental melt pool data, validating the model’s accuracy. Temperature sensing results revealed that thermistors without the surface film recorded a peak temperature of 116.3 °C, significantly higher than the 71.6 °C measured with the film, demonstrating improved heat transfer and sensing efficiency. A Bluetooth module was also integrated to enable real-time wireless temperature data transmission to mobile devices, allowing remote monitoring during the fabrication process. This research demonstrates the feasibility and application potential of integrating sensors into metallic structures via LFP technology to realize functional smart metal components, providing a valuable technical reference for future smart manufacturing and high-performance functional part development.
[1]J.-P. Kruth, M.C. Leu, T. Nakagawa, “Progress in Additive Manufacturing and Rapid Prototyping.” Cirp Annals, vol. 47(2), pp. 525-540, 1998.
[2]F. Calignano, D. Manfredi, E.P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, “Overview on additive manufacturing technologies.” Proceedings of the IEEE, vol. 105(4), pp. 593-612, 2017.
[3]B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. D. Plessis, “Metal additive manufacturing in aerospace: A review.” Materials & Design, vol. 209, 110008, 2021.
[4]M. Salmi, “Additive Manufacturing Processes in Medical Applications.” Materials, vol. 14, p. 191, 2021.
[5]R. Leal, F. M. Barreiros, L. Alves, F. Romeiro, J. C. Vasco, M. Santos, C. Mart, “Additive manufacturing tooling for the automotive industry.” The International Journal of Advanced Manufacturing Technology, vol. 92, pp. 1671-1676, 2017.
[6]JJ. Lewandowski, M. Seifi, “Metal Additive Manufacturing: A Review of Mechanical Properties.” Annual review of materials research, vol. 46(1), pp. 151-186, 2016.
[7]C.H. Hung, A. Sutton, Y. Li, Y. Shen, H.L. Tsai, M. C. Leu. “Enhanced mechanical properties for 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing.” Journal of Manufacturing Processes, vol.45, pp. 438-446, 2019.
[8]C. H. Hung, Y. Li, A. Sutton, W. T. Chen, X. Gong, H. Pan, H. L. Tsai, Ming C. Leu, “Aluminum Parts Fabricated by Laser-Foil-Printing Additive Manufacturing: Processing, Microstructure, and Mechanical Properties.” Materials, vol. 13, no. 2, 414, 2020.
[9]Y. X. Wang, C. H. Hung, H. Pommerenke, S. H. Wu, T. Y. Liu, “Fabrication of crack-free aluminum alloy 6061 parts using laser foil printing process.” Rapid Prototyping Journal, vol. 30, pp. 722-732, 2024.
[10]T.C. Huang, C.H. Hung, Y. Lin, “Residual stress reduction in Ti-6Al-4V parts fabricated by laser-foil-printing process.” Optics & Laser Technology, vol. 177, 111157, 2024.
[11]M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, C. Glorieux, “Photopyroelectric measurement of thermal conductivity of metallic powders.” Journal of Applied Physics, vol. 97, pp. 1-9, 2005.
[12]P. Dhaiveegana, N. Elangovanb, T. Nishimurac, N. Rajendran, “Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine-urban environment: field study.” Rsc Advances, vol. 6(53), pp. 47314-47324, 2016.
[13]A. Dodia, P. Shah, R. Sekhar, M.D, “Smart Sensors in Industry 4.0.” 2023 4th International Conference for Emerging Technology (INCET), vol. 177, pp. 1-6, 2023.
[14]M. Javaid, A. Haleem, R.P. Singh, S. Rab, R. Suman, “Significance of sensors for industry 4.0: Roles, capabilities, and applications.” Sensors International, vol. 2, 100110, 2021.
[15]M. Wachulec and M. Luckner, “Fault detection of jet engine heat sensor.” Procedia Computer Science, vol. 192, pp. 844-852, 2021.
[16]F. L. Duan and Y. Lin, “Development of accurate and robust high temperature sensor on aero-engine turbine blade surface.” 2018 Joint Propulsion Conference, 4622, 2018.
[17]S.I. Kim, H.Y. Jung, S. Yang, J. Yoon, H. Lee, WH. Ryu, “3D Printing of a miniature turbine blade model with an embedded fibre Bragg grating sensor for high-temperature monitoring.” Virtual and Physical Prototyping, vol. 17(2), pp. 156-169, 2022.
[18]M.S. Hossain, J.A. Gonzalez, R.M. Hernandez, M.A.I. Shuvo, J. Mireles, A. Choudhuri, Y. Lin, R. B. Wicker, “Fabrication of smart parts using powder bed fusion additive manufacturing technology.” Additive Manufacturing, vol. 10, pp. 58-66, 2016.
[19]V. Talakokula, S. Bhalla, “Reinforcement corrosion assessment capability of surface bonded and embedded piezo sensors for reinforced concrete structures.” Journal of Intelligent Material Systems and Structures, vol. 26(17), pp. 2304-2313, 2015.
[20]M.J. Hossain, B.T. Tabatabaei, M. Kiki, J.W. Choi, “Additive manufacturing of sensors: A comprehensive review.” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 12, pp. 277-300, 2025.
[21]X. Li, F. Prinz, “Metal embedded fiber Bragg grating sensors in layered manufacturing.” J. Manuf. Sci. Eng., vol. 125(3), pp. 577-585, 2003.
[22]A. Bournias-Varotsis, X. Han, R.A. Harris, D.S. Engstrøm, “Ultrasonic additive manufacturing using feedstock with build-in circuitry for 3D metal embedded electronics.” Additive Manufacturing, vol. 29, 100799, 2019.
[23]C. Bao, S.K. Seol, W.S. Kim, “A 3D integrated neuromorphic chemical sensing system.” Sensors and Actuators B: Chemical, vol. 332, 129527, 2021.
[24]J. V. Gordon, S. P. Narra, R. W. Cunningham, H. Liu, H. Chen, R. M. Suter, J. L. Beuth, A. D. Rollett, “Defect structure process maps for laser powder bed fusion additive manufacturing.” Additive Manufacturing, vol. 36, 101552, 2020.
[25]J. Bedmar, A. Riquelme, P. Rodrigo, B. Torres, J. Rams, “Comparison of different additive manufacturing methods for 316L stainless steel.” Materials, vol. 14(21), 6504, 2021.
[26]S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, “An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics.” Additive Manufacturing, vol. 8, pp. 36-62, 2015.
[27]N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control.” Additive Manufacturing, vol. 8, pp. 12-35, 2015.
[28]X. Chen, J. Li, X. Cheng, B. He, H. Wang, Z. Huang, “Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing.” Materials Science and Engineering: A, vol. 703, pp. 567-577, 2017.
[29]Z. Sun, X. Tan, S.B. Tor, W.Y. Yeong, “Selective laser melting of stainless steel 316L with low porosity and high build rates.” Materials & Design, vol. 104, pp. 197-204, 2016.
[30]C.H. Hung, W.T. Chen, M.H. Sehhat, M.C. Leu, “The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing.” The International Journal of Advanced Manufacturing Technology, vol. 112, pp. 867-877, 2021.
[31]F. Farrokhi, B. Endelt, M. Kristiansen, “A numerical model for full and partial penetration hybrid laser welding of thick-section steels.” Optics & Laser Technology, vol. 111, pp. 671-686, 2019.
[32]J. Zhou, X. Han, H. Li, S. Liu, J. Yi, “Investigation of layer-by-layer laser remelting to improve surface quality, microstructure, and mechanical properties of laser powder bed fused AlSi10Mg alloy.” Materials & Design, vol. 210, 110092, 2021.
[33]A.M. Jonaet, H.S. Park, L.C. Myung, “Prediction of residual stress and deformation based on the temperature distribution in 3D-printed parts.” J. Advanced Manufacturing Technology, vol. 113, pp. 2227-2242, 2021.
[34]J. S. Cagnone, K. Hillewaert, and N. Poletz. “Simulation of non-equilibrium fusion welding using the discontinuous galerkin method.” Proceedings of the 11th International Seminar Numerical Analysis of Weldability, 2015.
[35]C. S. Kim. Thermophysical properties of stainless steels. Argonne National Lab., Ill. United States, 1975.
[36]A. Eliasu, A. Czekanski, S. Boakye-Yiadom, “Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel.” The International Journal of Advanced Manufacturing Technology, vol. 113, pp. 2651-2669, 2021.
[37]M. Pandey, G. Mishra, “Types of sensor and their applications, advantages, and disadvantages.” Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2018, vol. 3, pp. 791-804, 2019.
[38]Y. Zhao, J.H.M. Bergmann, “Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: a systematic review.” a systematic review. Sensors, vol. 23(17), p. 7439, 2023.
[39]J.P. Chung, S.W. Oh, “A residual compensation method for the calibration equation of negative temperature coefficient thermistors.” Thermochimica Acta, vol. 616, pp. 27-32, 2015.
[40]C. Deng, W. Hu, S. Diao, F. Lin, D. Qian, “Measurement error analysis and calibration technique of NTC-based body temperature sensor.” Zhongguo yi Liao qi xie za zhi= Chinese Journal of Medical Instrumentation, vol. 39(6), pp. 395-399, 2015.
[41]R.K. Kamat, G.M. Naik, “Thermistors–in search of new applications, manufacturers cultivate advanced NTC techniques.” Sensor Review, vol. 22(4), pp. 334-340, 2002.
[42]O. S. Aleksić, P.M. Nikolić, “Recent advances in NTC thick film thermistor properties and applications.” Facta universitatis-series: Electronics and Energetics, vol. 30(3). pp. 267-284, 2017.
[43]Y.C. Lin, M.M. Raza, C.H. Hung, Y.X. Wang, Y.L. Lo, “Optimizing 3D Laser Foil Printing Parameters for AA 6061: Numerical and Experimental Analysis.” Journal of Manufacturing Science and Engineering, vol. 147(3), 031003, 2025.
[44]H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toyserkani, “A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties.” Materials & Design, vol. 144, pp. 98-128, 2018.
[45]P. Akbari, F. Ogoke, N.Y. Kao, K. Meidani, C.Y. Yeh, W. Lee, A.B. Farimani, “MeltpoolNet: Melt pool characteristic prediction in Metal Additive Manufacturing using machine learning.” Additive Manufacturing, vol. 55, 102817, 2022.
[46]M. Azhari, A. Alaoui, A. Abarda, B. Ettaki, J. Zerouaoui, “A Comparison of Random Forest Methods for Solving the Problem of Pulsar Search.” Innovations in Smart Cities Applications Edition 3: The Proceedings of the 4th International Conference on Smart City Applications 4. Springer International Publishing, pp. 796-807, 2020.
[47]P. Probst, M.N. Wright, A.L. Boulesteix, “Hyperparameters and tuning strategies for random forest.” Wiley Interdisciplinary Reviews: data mining and knowledge discovery, vol. 9(3), e1301, 2019.
[48]Z. Gao, K. Hao, L. Xu, Y. Han, L. Zhao, H. Jing, “Undercut inhibition mechanisms during high-speed MAG welding employing plate inclination.” Optics & Laser Technology, vol. 158, 108912, 2023.
[49]Z. Zhang, T. Zhang, C. Sun, S. Karna, L. Yuan, “Understanding melt pool behavior of 316L stainless steel in laser powder bed fusion additive manufacturing.” Micromachines, vol. 15(2), p. 170, 2024.
[50]J. Frostevarg, A.F.H. Kaplan, “Undercut suppression in laser-arc hybrid welding by melt pool tailoring.” Journal of laser applications, vol. 26(3), p. 031501, 2014.
[51]E. Assuncao, S. Williams, D. Yapp, “Interaction time and beam diameter effects on the conduction mode limit.” Optics and Lasers in Engineering, vol. 50(6), pp. 823-828, 2012.
[52]H. Wang, Y. Zou, “Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode.” International Journal of Heat and Mass Transfer, vol. 142, 118473, 2019.
[53]M. Bakhtiarian, H. Omidvar, A. Mashhuriazar, Z. Sajuri, C.H. Gur, “The effects of SLM process parameters on the relative density and hardness of austenitic stainless steel 316L.” Journal of Materials Research and Technology, vol. 29, pp. 1616-1629, 2024.
[54]Z. Gan, Y. Lian, S. E. Lin, K. K. Jones, W. K. Liu, G. J. Wagner, “Benchmark Study of Thermal Behavior, Surface Topography, and Dendritic Microstructure in Selective Laser Melting of Inconel 625.” Integrating Materials and Manufacturing Innovation, vol. 8. p. 178-193. 2019.
[55]M.S. Lee, et al, “Embedding sensors using selective laser melting for self-cognitive metal parts.” Additive Manufacturing, vol. 33, 101151, 2020.
[56]L. Nuñez III, P. Sabharwall, I.J. van Rooyen, “In situ embedment of type K sheathed thermocouples with directed energy deposition.” The International Journal of Advanced Manufacturing Technology, vol. 127(7), pp. 3611-3623, 2023.
[57]T. Turk, C.E. Dominguez, A.T. Sutton, J.D. Bernardin, J. Park, M.C. Leu, “In situ embedding of resistance temperature detectors with the use of laser-foil-printing additive manufacturing.” Smart Materials and Structures, vol. 34(1), 015033, 2024.
[58]G. Liu, L. Guo, C. Liu, Q. Wu, “Evaluation of different calibration equations for NTC thermistor applied to high-precision temperature measurement.” Measurement, vol. 120, pp. 21-27, 2018.
[59]D.A. Kukuruznyak, J.B. Miller, M.C. Gregg, F. S. Ohuchi, “Fast response thin-film thermistor for measurements in ocean waters.” Review of Scientific Instruments, vol. 76, 024905, 2005.
[60]L. Chen, J. Zhang, Y. Wang, “Wireless car control system based on ARDUINO UNO R3.” 2018 2nd IEEE Advanced Information Management, Communications, Electronic and Automation Control Conference, pp. 1783-1787, 2018.
校內:2030-08-18公開