簡易檢索 / 詳目顯示

研究生: 黃雅雯
Huang, Ya-Wen
論文名稱: 水稻中C 類型CDK 基因(Orysa; CDKC;1)受發育調控並受鹽害及離層酸誘導之研究
Expression of the rice C-type cyclin-dependent protein kinase gene, Orysa;CDKC;1, is regulated during development and induced in response to salt and ABA.
指導教授: 黃定鼎
Huang, Dinq-Ding
黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物學系
Department of Biology
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 87
中文關鍵詞: 細胞週期水稻訊息傳遞離層酸
外文關鍵詞: cell cycle, ABA, signal transduction, CDK, oryza sativa
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cyclin-dependent protein kinases(CDKs)是由一群 serine/threonine蛋白激所組成的基因家族,它們必須藉著與cyclin結合才能呈現其作用活性。根據酵母菌及動物系統的研究指出:CDK除了涉及真核生物中細胞週期(cell cycle)的調控外,在細胞分化及基因轉錄等過程中也扮演重要角色,然而,目前在植物的相關研究上,則大多僅集中於對細胞增生(cell proliferation)機制調控的了解。在本研究中,我們從水稻分離出一個Orysa;CDKC;1基因,根據親源分析(phylogenetic analysis)指出:它是屬於植物C類型的CDK基因,也是目前唯一在單子葉植物中發現的CDKC。為了進一步探討Orysa;CDKC;1基因的功能,由北方墨點分析結果得知:此基因在所有檢測的組織中皆有表現,且在較成熟的葉子及花穗中表現量較高,而在較年幼的葉子及花穗中表現量則較低,此顯示:Orysa;CDKC;1基因可能在葉子及花穗發育晚期進行著重要的調控工作。另一方面,Orysa;CDKC;1基因在具有分裂能力較旺盛的年幼組織中表現量低,這可能也意味其扮演著與細胞增生較無直接關係的角色。此外,Orysa;CDKC;1基因在hydroxyurea (HU)的處理下受到急遽性的誘導,然而,在此充當細胞增生活性指標的Orysa;CDKB2;1基因的表現則呈現被抑制的現象;這樣的結果也再一次暗示Orysa;CDKC;1基因可能與細胞增生的調控機制較不相關。最後,我們也探討Orysa;CDKC;1基因在缺糖、鹽害(salt stress)、甘露糖醇(mannitol)及離層酸(ABA)作用下的表現情形。結果顯示:Orysa;CDKC;1基因表現會受到鹽害及離層酸的誘導,但不會受缺糖及甘露糖醇的影響。綜合本研究的結果推論:Orysa;CDKC;1基因不僅受到發育的調控,也參與了鹽害及離層酸的訊息傳遞路徑。

    Cyclin-dependent protein kinases (CDKs) form a conserved superfamily of eukaryotic serine/ threonine protein kinases, which require binding to a regulatory cyclin for activity. CDKs are organized in several gene families, and involved in different aspects of cell biology, such as cell proliferation, differentiation and transcription. In this study, we present the characterization of the rice C-type CDK gene, Orysa;CDKC;1, which is first identified from monocotyledons. Orysa;CDKC;1 gene was expressed in all organs of rice plant we examined. Relative high amounts of Orysa;CDKC;1 transcript were detected in mature leaves and panicles, compared with those in immature leaves and panicles. The result indicated its putative roles at the later stage of leaf and panicle development. Besides, the temporally lower accumulation of the Orysa;CDKC;1 transcript in younger organs with high dividing activity could also imply that Orysa;CDKC;1 gene performs functions indirectly correlated with proliferation. Furthermore, upon hydroxyurea (HU), which lead to cell proliferation inhibition, as indicated by Orysa;CDKB2;1 expression, which served as an active cell proliferation marker, the dramatically accumulation of Orysa;CDKC;1 transcripts confirms that Orysa;CDKC;1 could function beyond cell proliferation. In addition, we also elucidate the expression patterns of Orysa;CDKC;1 in response to sucrose starvation, salt stress, mannitol and ABA treatments in rice cells. Our data showed that the Orysa;CDKC;1 transcript was induced upon salt stress and ABA treatment, and was unaffected by sucrose starvation and mannitol application. In conclusion, it has been proposed that Orysa;CDKC;1 isolated from rice might be involved not only in the developmental programs, but also in the salt- and ABA- signaling pathway.

    誌謝....................................................................................................1 中 文 摘 要......................................................................................2 Abstract ............................................................................................3 Abbreviations ...................................................................................4 Contents ............................................................................................5 List of Tables ....................................................................................9 List of Figures .................................................................................10 1. Introduction................................................................................12 1.1 The discovery of cyclin-dependent protein kinases.................................13 1.2 Functional overview of the cyclin-dependent protein kinases in yeast and animals..................................................................................14 1.2.1 CDKs involved in cell cycle regulation.............................................. 14 1.2.2 CDKs involved in activating other CDKs ..........................................15 1.2.3 CDKs involved in transcription by RNA polymerase II activation ................................................................................................16 1.2.4 CDK in differentiated cells ............................................................18 1.2.5 CDKs involved in nutrient metabolism .............................................19 1.2.6 CDKs involved in apoptosis ...........................................................19 1.2.7 CDKs involved in activation of STAT................................................20 1.3 Roles of cyclin-dependent protein kinases in plants.................................20 1.3.1 Plant CDKA...............................................................................20 1.3.2 Plant CDKB...............................................................................21 1.3.3 Plant CDKC...............................................................................22 1.3.4 Plant CDKD...............................................................................23 1.3.5 Plant CDKE...............................................................................24 1.4 Roles of cyclin-dependent protein kinases pathways in plants....................24 1.5 Aim of this study ...........................................................................26 2. Materials and Methods...............................................................27 2.1 Plant materials and treatments .........................................................27 2.2 Fresh weight and dry weight determination..........................................28 2.3 Cloning of Orysa;CDKC;1 gene ........................................................29 2.4 Preparation of total RNA.................................................................29 2.5 Northern blot................................................................................30 2.6 Transformation of E. coli.................................................................32 2.7 Probe labeling...............................................................................32 2.8 Purification of DNA fragments .........................................................33 2.9 Polymerase Chain Reaction (PCR) ....................................................33 2.10 DNA sequencing ..........................................................................33 2.11 Sequence analysis.........................................................................34 2.12 Measurement of amount and purity of nucleic acid...............................34 3. Results..........................................................................................35 3.1 Isolation and sequence analyses of the cDNA encoding an additional member of the CDC2-related protein kinase, named Orysa;CDKC;1 (Os;CDKC;1) ................................................................................35 3.2 Chromosomal positions and structures of the plant CDKC.......................36 3.3 Spatial and temporal expression of Os;CDKC;1 in rice organs and during leaf development..................................................................37 3.4 The analysis of Os;CDKC;1 expression in response to hydroxyurea(HU)..... 38 3.5 The expression of Os;CDKC;1 in response to sucrose starvation................38 3.6 Expression of the Os;CDKC;1 gene as affected by salt stress in rice suspension cell cultures and in roots ..................................................39 3.7 The expression of Os;CDKC;1 in response to mannitol............................40 3.8 The accumulation of Os;CDKC;1 transcript in response to ABA treatment....................................................................................40 4. Discussion.................................................................................... 42 5. References....................................................................................49 6. Appendix......................................................................................84 Appendix I. Cyclin-dependent protein kinases in yeast and animals................84 Appendix II. Classification of cyclin-dependent protein kinases in plants..........85 7. 自 述.........................................................................................86

    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410
    Barrôco, R.M., De Veylder, L., Magyar, Z., Engler, G., Inze, D., and Mironov, V. (2003). Novel complexes of cyclin-dependent kinase and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cellular and Mol. Life Sci. 60, 401-412.
    Beemster, G.T.S., de Vusser, K., de Tavernier, E., de Bock, K., and Inzé, D. Variation in Growth Rate between Arabidopsis Ecotypes Is Correlated with Cell Division and A-Type Cyclin-Dependent Kinase Activity (2002). Plant Physiol. 129, 854-864.
    Bergounioux, C., Perennes, C., Hemerly, A.S., Qin, L.X., Sarda, C., Inze, D., and Gadal P. (1992). A cdc2 gene of Petunia hybrida is differentially expressed in leaves, protoplast and during various cell cycle phases. Plant Mol. Biol. 20, 1121-1130.
    Bostock, R.M., and Quatrano, R.S. (1992). Regulation of Em Gene Expression in Rice-Interaction between Osmotic Stress and Abscisic Acid. Plant Physiol. 98, 1356-1363.
    Bregman, D.B., Pestell, R.G., and Kidd, V.J. (2000). Cell cycle regulation and RNA polymerase II. Frontiers Biosci. 5, 244-257.
    Buck, V., Russell, P., and Millar, J.B.A. (1995). Identification of a cdk-activating kinase in fission yeast. EMBO J. 14, 6173-6183.
    Burssens, S., Himanen, K., van de Cotte, B., Beeckman, T., Van Montagu, M., Inzé, D., and Verbruggen, N. (2000). Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 5, 632-40.

    Chen, X., Oh, S.W., Zheng, Z., Chen, H.W., Shin, H.H., and Hou, S.X. (2003). Cyclin D-cdk4 and cyclin E-Cdk2 Regulate the JAK/STAT Signal Transduction Pathway in Drosophila. Developmental Cell. 4, 179-190.
    Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. (2000). ABFs, a Family of ABA-responsive Element Binding Factors. J. Biol. Chem. 275, 1723-1730.
    Claes, B., Dekeyser, R., Villarroel, R., Van den Bulcke, M., Bauw, G., Van Montagu, M., and Caplan, A. (1990). Characterization of a Rice Gene Showing Organ-Specific Expression in Response to Salt Stress and Drought. Plant Cell 2, 19-27.
    Cockcroft, C.E., den BOER, B.G., Healy, J.M., and Murray, J.A.H. (2000). Cyclin D control of growth rate in plants. Nature 405, 575-579.
    Colasanti, J., Tyers, M. and Sundaresan, V. (1991). Identification and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays. Proc. Natl. Acad. Sci. USA. 88, 3377-3381.
    Connel-Crowley, L., Le Gall, M., Vo, D.J, and Giniger, E. (2000). The cyclin-dependent kinase Cdk5 controls mutiple aspects of axon patterning in vivo. Curr. Biol. 10, 599-602
    Copper, K.F., Mallory, M.J., Smith, J.B., and Strich, R. (1997). Stress and developmental regulation of the yeast C-type cyclin Ume3p (Srb11p/Ssn8p). EMBO J. 16, 4665-4675.
    Dahmus, M.E. (1996). Reversible Phosphorylation of the C-terminal Domain of RNA Polymerase II. J. Biol. Chem. 271, 19009-19012.
    Damagnez, V., Makela, T.P., and Cottarel, G. (1995). Schizosaccharomyces pombe Mop1-Mcs2 is related to mammalian Cak. EMBO J. 14, 6164-6172.
    De Bondt, H.L., Rosenblatt, J., Jancarik, J., Jones, H.D., Morgan, D.O.L., and Kim, S-H. (1993). Crystal structure of cyclin-dependent kinase 2. Nature 363, 595-602.

    De Falco, G. and Giordano, A. (2002). CDK9: From Basal Transcription to Cancer and AIDS. Cancer Biology&Therapy 1, 342-347.
    De Falco, G. and Giordano, A. (1998). CDK9 (PITALRE): a multifunctional cdc2-related kinase. J. Cell Physiol. 177, 501-506.
    Deng, X.W. (1994). Fresh view of light signal transduction in plants. Cell 76, 423-426.
    DrØbak, B.K., and Watkins, P.A.C. (2000). Inositol (1,4,5) trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett. 481, 240-244.
    Dynlacht, B.D., Flores, O., Lees, J.A., and Harlow, E. (1994). Differential regulation of E2F trans-activation by cyclin/cdk2 complexes. Genes Dev. 8, 1772-1786.
    Espinoza, F.H., Farrell, A., Erdjument-Bromage, H., Tempst, P., and Morgan, D.O. (1996). Acyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273, 1714-1717.
    Espinoza, F.H., Ogas, J., Herskowitz, I., and Morgan, D.O. (1994). Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266, 1388-1391.
    Fabian, Tanja., Lorbiecke, René., Umeda, Masaaki., and Sauter, Margret. (2000). The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta 211, 376-383.
    Feiler, H. and Jacobs, T. (1991). Cloning of the pea cdc2 homologue by efficient immunological screening of PCR products. Plant Mol. Biol. 17, 321-333.
    Ferreira, P.C.G., Hemerly, A.S., Villaroel, R., Van Montagu, M. and Inzé, D. (1991). The Arabidopsis functional homolog of the p34cdc2 proteion kinase. Plant Cell 3, 531-540.

    Fobert, P.R., Gaudin, V., Lunness, P., Coen, E.S., and Doonan, J.H. (1996). Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell 8, 1465-1476.
    Gampala, S.S.L., Finkelstein, R.R., Sun, S.S.M., and Rock, C.D. (2002). ABI5 interacts with abicisic acid signaling effectors in rice. J. Biol. Chem. 277, 1689-1694.
    Garber, M.E., and Jones, K.A. (1999). HIV-1 Tat: Coping with negative elongation factors. Curr. Opin. Immunol. 11, 460-465.
    Garcia-Bustos, J., Heitman, J., and Hall, M.N. (1991) Nuclear protein localization. Biochim. Biophys. Acta. 1071, 83-101
    Graña, X., De Luca, A., Sang, N., Fu, Y., Claudio, P.P., Rosenblatt, J., Morgan, D.O., and Giordano, A. (1994). PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc. Natl. Acad. Sci. USA. 91, 3834-3838.
    Gu, W., Malik, S., Ito, M., Yuan, C-X., Fondell, J.D., Zhang, X., Martinez, E., Qin, J., and Roeder, R.G. (1999). A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3, 97-108.
    Hanks, S.K., Quinn, A.M., and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42-52.
    Hartwell LH. (1974). Saccharomyces cerevisiae cell cycle. Bacteriol. Rev. 38, 164-98.
    Hashimoto, J., Hirabayashi, T., Hayano, Y., Hata, S., Ohashi, Y., Suzuka, I., Utsugi, T., Toh-e, A., and Kikuchi, Y. (1992). Isolation and characterization of cDNA clones encoding cdc2 homologues from Oryza sativa: A functional homologue and cognate variants. Mol. Gen. Genet. 233, 10-16.
    Hata, S. (1991). cDNA cloning of a novel cdc2+/CDC28-related protein kinase from rice. FEBS Lett. 279, 149-152.
    Healy, J.M.S., Menges, M., Doonan, J.H., and Murray, J.A.H. (2001). The Arabidopsis D-type Cyclins CycD2 and CycD3 Both Interact in Vivo with the PSTAIRE Cyclin-dependent kinase Cdc2 but Are Differentially Controlled. J. Biol. Chem. 276, 7041-7047.
    Hemerly, A.S., Ferreira, P.J.E., Van Montagu, M., Engler, G., and Inzé, D. (1993). Cdc2a expression in Arabidopsis is linked with the competence for cell division. Plant Cell 5, 1711-1723.
    Hengartner, C.J., Myer, V.E., Liao, S-M., Wilson, C.J., Koh, S.S., and Young, R.A. (1998). Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin- dependent kinases. Mol. Cell 2, 43-53.
    Hernan Espinoza, F., Farrell, A., Erdjument-Bromage, H., Tempst, P., and Morgan, D.O. (1996). A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273, 1714-1717.
    Herrmann, C.H., and Rice, A.P. (1995). Lentivirus Tat proteins specifically assiciate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase: candicate for a Tat cofactor. J. Virol. 69, 1612-1620.
    Hirayama, T., Imajuku, Y., Anai, T., Matsui, M., and Oka, A. (1991). Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene 105, 159-165.
    Hirt, H., Pay, A., Bogre, L., Meskiene, I., and Heberle-Bors, E. (1993). Cdc2MsB, a cognate cdc2 gene from alfalfa, complements the G1/S but not the G2/M transition of budding yeast cdc28 mutants. Plant J. 4, 61-69.
    Hirt, H., Pay, A., Gyorgyey, J., Bako, L., Nemeth, K., Bogre, L., Schweyen, R.J., Heberle-Bors, E., and Dudits, D. (1991). Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc. Natl. Acad. Sci. USA. 88, 1636-1640.
    Hoffmann, I., Clarke, P.R., Marcote, M.F., Karsenti, E., and Draetta, G. (1993). Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53-63.
    Hu, W., and Jans, D.A. (1999). Efficiency of importinα/β-mediated NLS recognition and nuclear import: differential role of NTF2. J. Biol. Chem. 274, 15820-15827.
    Hübner, S., Smith, H.M.S., Hu, W., Chan, C.K., Rihs, H-P., Paschal, B., Raikhel, N.V., and Jans, D.A. (1999). Plant importinα binds nuclear localization sequences with high affinity and mediates nuclear import independent of importinβ. J. Biol. Chem. 274, 22610-22617.
    Hunt, T. (1989). Maturation promoting factor, cyclin and the control of M-phase. Curr. Opin. Cell Biol. 1989 1, 268-74.
    Huntley, R.P., and Murray, J.A.H. (1999). The plant cell cycle. Curr. Opin. Plant Biol. 2, 440-446.
    Imajuku, Y., Hirayama, T., Endoh, H., and Oka, A. (1992). Exon-intron organization of the Arabidopsis thaliana protion kinase genes CDC2a and CDC2b. FEBS Lett. 304, 73-77.
    Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J-K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interaction and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935-1949.
    Izawa, T., Foster, R., and Chua, N-H. (1993). Plant bZIP DNA binding specificity. J. Mol. Biol. 230, 1131-1144.
    Jans, D.A., Xiao, C-Y., and Lam, H.C. (2000). Nuclear targeting signal recognition: a key control point in nuclear transport? BioEssays 22, 532-544.

    Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massagué, J., and Pavletich, N.P. (1995). Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex, Nature 376, 313-320.
    Joubès, J., Chevalier, C., Dudits, D., Heberle-Bors, E., Inzé, D., Umeda, M., and Renaudin, J-P. (2000). CDK-related protein kinases in plants. Plant Mol. Biol. 43, 607-620.
    Joubès, J., Lemaire-Chamley, M., Delmas, F., Walter, J., Hernould, M., Mouras, A., Raymond, P., and Chevalier, C. (2001). A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. Plant Physiol. 126, 1403-1415.
    Journet, E.P., Bligny, R., and Douce, R. (1986). Biochemical changes during sucrose deprivation in higher plant cell. J. Biol. Chem. 5, 3193-3199.
    Kaldis, P. (1999). The cdk-activating kinase (CAK): from yeast to mammals. Cell 55, 284-296.
    Kidou, S., Umeda, M., and Uchimiya, H. (1994). Nucleotide sequence of rice (Oryza sativa L.) cDNA homologous to cdc2 gene. DNA Seq. 5, 125-129.
    King, R.W., Jackson, P.K., and Kirschner, M.W. (1994). Mitosis in transition. Cell 79, 563-571.
    Lapidot-Lifson, Y., Patinkin, D., Prody, C.A., Ehrlich, G., Seidman, S., Ben-Aziz, R., Benseler, F., Eckstein, F., Zakut, H., and Soreq, H. (1992). Cloning and antisense oligodexynucleotide inhibition of a human homolog of cdc2 required in hematopoiesis. Proc. Natl. Acad. Sci. USA 89, 579-583.
    Lenburg, M.E., and O'Shea, E.K. (1996). Signaling phosphate starvation. Trends Biochem. Sci. 21, 383-387.

    Leung, J., Bouvier-Durand, M., Morris, P-C., Guerrier, D., Chefdor, F., and Giraudat, J. (1994). Arabidopsis ABA Response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448-1452.
    Leung, J., and Giraudat, J. (1998). Abscisic acid signal transduction. Annual. Rev. Plant Physiol. Plant Mol. Biol. 49, 199-222.
    Levy, D.E., and Darnell, J.E. (2002). STATs: transcriptional control and biological impact. Nature reviews. Mol. Cell. Biol. 3, 651-662.
    Lew, D.J., and Kornbluth, S. (1996). Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr. Opin. Cell. Biol. 8, 795-804.
    Liao, S.M., Zhang, J., Jeffery, D.A., Koleske, A.J., Thompson, C.M., Chao, D.M., Viljoen, M., van, V.H., and Young, R.A. (1995). A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374, 193-196.
    Lin, C.C., an Kao, C.H. (1995). NaCl stress in rice seedlings: the influence of calcium on root growth. Bot. Bull. Acad. Sin. 36, 41-45.
    Lindstrom, D.L., and Hartzog, G.A. (2001). Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Genetics 159, 487-497.
    Lorbiecke, R. and Sauter, M. (1999). Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 119, 21-29.
    Magyar, Z., Meszaros T., Miskolczi, P., Deak M., Feher, A., Brown, S., Kondorosi, E., Athanasiadis, A., Pongor, S., and Bilgin, M. (1997).Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9, 223-235.
    Marshall, N., Peng, J., Xie, Z., and Price, D. (1996). Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176-27183.
    Marshall, N., and Price, D. (1996). Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell Biol. 12, 2078-2090.
    Martinez, M.C., Jorgensen, J.E., Lawton, M.A., Lamb, C.J. and Doerner, P.W. (1992). Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc. Natl. Acad. Sci. USA 89, 7360-7364.
    Mazumder, S., Gong, B., and Almasan, A. (2000). Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene 19, 2828-2835.
    Mazumder, S., Gong, B., Chen, Q., Deazba, J.A., Buchsbaum, J.C., and Almasan, A. (2002). Proteolytic Cleavage of Cyclin E Leads to Inactivation of Associated Kinase Activity and Amplification of Apoptosis in Hematopoietic Cells. Mol. Cell. Biol. 22, 2398-2409.
    Measday, V., Moore, L., Ogas, J., Tyers, M., and Andrews, B. (1994). The PCL2 (ORFD)-Pho85 cyclin-dependent kinase complex: a cell cycle regulator in yeast. Science 266, 1391-1395.
    Meikrantz, W., and Schlegel, R. (1996). Suppression of Apoptosis by Dominant Negative Mutants of Cyclin-dependent Protein Kinases. J. Biol. Chem. 271, 10205 - 10209.
    Mendenhall, M.D. and Hodge, A.E. (1998). Regulation of cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1191-1243.
    Menges, M., and Murray, J.A.H. (2002). Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J. 30, 203-212.
    Miao, G-H., Hong, Z., and Verma, D.P.S. (1993). Two functional soybean genes encoding p34cdc2 protein kinase are regulated by different plant developmental pathways. Proc. Natl. Acad. Sci. USA 90, 943-947.
    Mironov, V., Deveylder, L., Van Montagu, M., and Inzé, D. (1999). Cyclin-dependent kinases and cell division in plants: the nexus. Plant Cell 11, 509-521.
    Miyamoto, Y., Imamoto, N., Sekimoto, T., Tachibana, T., Seki, T., Tada, S., Emomoto, T., and Yoneda, Y. (1997). Differential modes of nuclear localization signal (NLS) recognition by three different classes of NLS receptors. J. Biol. Chem. 272, 26375-26381.
    Morgan, D.O. (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell. Dev. Biol. 13, 261-291.
    Mundy, J. and Chua, N-H. (1988). Abscisic acid and water stress induce the expression of a novel rice gene. EMJO J. 7, 2279-2286.
    Murray, S., Udupa, R., Yao, S., Hartzog, G., and Prelich, G. (2001). Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Bur1 cycln-dependent kinase. Mol. Cell. Biol. 21, 4089-4096.
    Nadler, S.G., Tritschler, D., Haffar, O.K., Blake, J., Bruce, G., and Cleaveland, J.S. (1997). Differential expression and sequence-specific interaction of karyopherinα with nuclear localization sequences. J. Biol. Chem. 272, 4310-4315.
    Napolitano, G., Licciardo, P., Carbone, R., Majello, B., and Lania, L. (2002). CDK9 Has the Intrinsic Property to Shuttle Between Nucleus and Cytoplasm, and Enhanced Expression of Cyclin T1 Promotes Its Nuclear Localization. J. Cell. Physiol. 192, 209-215.
    Nasmyth, K. (1996). At the heart of the budding yeast cell cycle. Trends in Genet. 12, 405-412.
    Newman, T., de Bruijn, F.J., Green, P., Keegstra, K., Kende, H., Mclntosh, L., Ohlrogge, J., Raikhel, N., Somerville, S., Thomashow, M., Retzel, E., and Somerville, C. (1994). Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 106, 1241-1255.
    Nigg, E.A. (1996). Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr. Opin. Cell Biol. 8, 312-317.
    Nigg, E.A. (1995). Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17, 471-480.
    Nikolic, M., Dudek, H., Kwon, Y.T., Ramos, Y.F.M., and Tsai, L.-H. (1996). The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816-825.
    Norbury, C. and Nurse, P. (1992). Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441-470.
    Nurse, P., Thuriaux, P., and Nasmyth, K. (1976). Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 146, 167-78.
    Ohshima, T., Ward, M., Huh, C.G., Longenecker, G., Veeranna, P.H.C., Brady, R.O., Martin, L.J., and Kulkarni, A.B. (1996). Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and prenatal death. Proc. Natl. Acad. Sci. USA. 93, 11173-11178.
    Park, D.S., Morris, E.J., Padmanabhan, J., Shelanski, M.L., Geller, H.M., and Greene, L.A. (1998). Cyclin-dependent Kinases Participate in Death of Neurons Evoked by DNA-damaging Agents. J. Cell Biol. 143, 457-467.
    Patturajan, M., Schulte, R.J., Sefton, B.M., Berezney, R., Vincent, M., Bensaude, O., Warren, S.L., and Corden, J.L. (1998). Growth-related changes in phosphorylation of yeast RNA polymerase II. J. Biol. Chem. 273, 4689-4694.
    Peeper, D.S., Parker, L.L., Ewen, M.E., Toebes, M., Hall, F.L., Xu, M., Zantema, A., van der Eb, E.F., and Piwnica-Worms, H. (1993). A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12, 1947-1954.
    Peng, J., Zhu, Y., Milton J.T., and Price, D.H. (1998). Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 12, 755-762.
    Pines, J. (1995). Cyclins and cyclin-dependent kunases: a biochemical view. Biochem. J. 308, 697-711.
    Pines, J. (1994). Protein kinases and cell cycle control. Semin. Cell Biol. 5, 399-408.
    Price, D.H. (2000). P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell Biol. 20, 2629-2634.
    Rickert, P., Seghezzi, W., Shanahan, F., Cho, H. and Lees, E. (1996). Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12, 2631-2640.
    Robertson, J.M., Hubick, K.T., Yeung, E.C., and Reid, D.M. (1990). Developmental responses to drought and abscisic acid in sunflower roots.2. Mitotic activity. J. Exp. Bot. 41, 339-350.
    Sacks, M.M., Silk, W.K., and Burman, P. (1997). Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol. 114, 519-527.
    Sakamoto, A., Okumura, T., Kaminaka, H., Sumi, K., and Tanaka, K. (1995). Structure and differential response to abscisic acid of two promoters for the cytosolic copper/zinc-superoxide dismutase genes, SodCc1 and SodCc2, in rice protoplasts FEBS Lett. 358, 62-66.
    Sambrook. J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
    Sauter, M. (1997). Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J. 11, 181-190.
    Sauter, M., Mekhedov, S.L., and Kende, H. (1995). Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J. 7, 623-632.
    Schlegel, J., Peters, I., Orrenius, S., Miller, D.K., Thornberry, N.A., Yamin,T.T., and Nicholson, D.W. (1996). CPP32/Apopain Is a Key Interleukin 1βConverting Enzyme-like Protease Involved in Fas-mediated Apoptosis. J. Bio. Chem. 271, 1841-1844.
    Schuppler, U., He, P-H., John, PCL., and Munns, R. (1998). Effect of water stress on
    cell division and cell-devision-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol. 117, 667-678.
    Seger, G., Gadisseur, I., Bergounioux, C., de Almeida Engler, J., Jacqmqrd, A., van Montagu, M., and Inzé, D. (1996). The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phase of the cell cycle. Plant J. 10, 601-612.
    Serizawa, H., Makela, T.P., Conaway, J.W., Conaway, R.C., Weinberg, R.A., and Young, R.A. (1995). Association of CDK-activating kinase subunits with transcription factor TFIIH. Nature 374, 280-282.
    Sherr, C.J. (1994). Mammalian G1 cyclins. Cell 73, 1059-1065.
    Shi, L., Nishioka, W.K., Th’ng, J., Bradbury, E.M., Litchfield, D.W., and Greenberg, A.H. (1994). Premature p34cdc2 activation required for apoptosis. Science 263, 1143-1145.
    Shinozaki, K. and Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115,327-334.
    Stals, H. and Inzé, D. (2001). When plant cells decide to divide. Trends in Plant Science 6, 359-364.
    Stern, B., and Nurse, P. (1996). A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345-350.
    Sterner, D.E., Lee, J.M., Hardin, S.E., and Greenleaf, A.L. (1995). The yeast carboxyl-terminal repeat domain kinase CTDK-1 is a divergent cyclin-cyclin-dependent kinase complex. Mol. Cell. Biol. 15, 5716-5724.
    Sun, X., Zhang, Y., Cho, H., Rickert, P., Lees, E., Lane, W., and Reinberg, D. (1998). NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell 2, 213-222.
    Svejstrup, J.Q., Vichi, P., and Egly, J-M. (1996). The multiple roles of transcription/repair factor TFIIH. Trends Biochem. Sci. 21, 346-350.
    Tassan, J.P., Jaquenoud, M., Leopold, P., Schultz, S.J., and Nigg, E.A. (1995). Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. USA 92, 8871-8875.
    Thuret, J.Y., Valay, J.G.M Faye, G. and Mann, C. (1996). Civl (CAK in vivo), a novel Cdk-activating kinase. Cell 86, 565-576.
    Toh-e, A., Tanaka, K., Uesono, Y., and Wickner, R.B. (1988). Pho85, a negative regulator of the Pho system, is a homolog of the protein kinase gene, Cdc28 of Saccharomyces cerevisiae. Mol. Gen. Genet. 214, 162-164.
    Umeda, M., Bhalerao, R.P., Schell, J., Uchimiya, H., and Konez, C. (1998). A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95, 5021-5026.
    Umeda, M., Umeda-Hara, C., and Uchimiya, H. (2000). A cyclin-dependent kinase-activating kinase regulates differentiation of root initial cells in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 13396-13400.
    Umeda, M., Umeda-Hara, C., Yamaguchi, M., Hashimoto, J., and Uchimiya, H. (1999). Differential expression of genes for cyclin-dependent protein kinase in rice plants. Plant Physiol. 119, 31-40.
    Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Amaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97, 11632-11637.
    Valay, J.G., Simon, M., Dubois, M.F., Bensaude, Q., Facca, C., and Faye, G. (1995). TheKIN28Gene is Required both for RNA Polymerase II Mediated Transcription and Phosphorylation of the Rpb1p CTD. J. Mol. Biol. 249, 535-544.
    van den Heuvel, S., and Harlow, E. (1993). Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050-2054.
    Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D., and Handa, H. (1998). Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17, 7395-7403.
    Wang, H., Qi, Q., Schorr, P., Cutler, A., Crosby, W.L., and Fowke, L.C. (1998). ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15, 501-510.
    Wang, H., Zhou, Y., Gilmer, S., Whitwil, S., and Fowke, L.C. (2000). Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J. 24, 613-623.
    Wang, J., and Walsh, K. (1996). Resistance to Apoptosis Conferred by Cdk Inhibitors During Myocyte Differentiation. Science 273, 359-361.
    Wei, P., Garber, M.E., Fang, S.M., Fischer W.H., and Jones, K.A. (1998). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451-462.
    Wozniak, R.W., Rout, W.P., and Aitchison, J.D. (1998). Karyopherins and kissing cousins. Trends Cell Biol. 8, 184-188.
    Yamaguchi, M., Umeda, M., and Uchimiya, H. (1998). A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent protein kinases and the carboxy-terminal domain of RNA polymerase II. Plant J. 16, 613-619.
    Yamaguchi, Y., Takagi, T., Wada, T., Yano, K., Furuya, A., Sugimoto, S., Hasegawa, J., and Handa, H. (1999). NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41-51.
    Yao, S.L., McKenna, K.A., Sharkis, S.J., and Bedi, A. (1996). Requirement of p34cdc2 kinase for apoptosis mediated by the Fas/APO-1 receptor and interleukin 1beta-converting enzyme-related proteases. Cancer Res. 56, 4551-4555.
    Yu, S.M., Kuo, Y.H., Sheu, G., Sheu, Y.J., and Liu, L.F. (1991). Metabolic derepression of alpha-amylase gene expression in suspension-cultured cells of rice. J Biol Chem 266, 21131-21137
    Zhou, B.B., Li, H., Yuan, J., and Kirschner, M.W.(1998). Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc. Nalt. Acad. Sci. USA 95, 6785-6790.
    Zhu, J-K., Liu, J., and Xiong, L. (1998). Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrion. Plant Cell 10, 1181-1191.
    Zorio, D.A.R., and Bentley D.L. (2001). Transcription elongation: The Foggy is lifting. Curr. Biol. 11, R144-R146.

    下載圖示 校內:立即公開
    校外:2003-07-11公開
    QR CODE