| 研究生: |
洪尚廷 Hong, Shang-Ting |
|---|---|
| 論文名稱: |
氧化鋅奈米線電晶體製作與分析 Fabrication and Characterization of ZnO Nanowire Transistors |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 氧化鋅 、奈米線 、電晶體 |
| 外文關鍵詞: | ZnO, Nanowire, transistor |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討兩個研究主題,第一個是氧化鋅奈米線的成長,第二個是奈米線電晶體製程。
首先,在成長氧化鋅奈米線的部份主要探討氧氣出口位置與濃度對氧化鋅奈米結構型態上之變化。在本研究中採用金屬鋅粉作為鋅反應前驅物,由實驗中發現,在成長氧化鋅奈米線的時候,氧氣濃度不足的會造成有奈米帶的現象,提高氧氣濃度就會使得氧化鋅奈米帶變成氧化鋅奈米線。然而本實驗中還有發現鋅的濃度過高會使得氧化鋅奈米線變成薄膜,因此成長氧化鋅奈米線所需的鋅濃度與氧濃度,哪一個太多或太少都不好,因此如何設計適當的鋅和氧濃度,是成長氧化鋅奈米線必須考慮的,在本論文也有用文獻中的所提到高溫成長氧化鋅奈米線。利用氧化鋅與石墨的結合在高溫時會產生微量的鋅濃度,加上微量的氧濃度,成長出來的氧化鋅奈米線經過TEM與XRD的分析,成長方向均為[0001]。本研究過程中也有發現,控制前驅物中的鋅濃度,會使得成長所需的觸媒在奈米線的末端或者被埋在基板裡。
除了成長氧化鋅奈米線外,本論文也探討奈米線電晶體的製備。其主要探討在製備奈米線電晶體中,利用介電泳排列奈米線時,奈米線與電極之間的接觸不良,導致接觸電阻極大。在本論文中將使用熱壓法解決接觸不良的問題。熱壓法是利用電極在受熱中金屬韌性提升,使得奈米線陷入電極裡面,達到奈米線與電極接觸變好,最後在使用Epoxy包覆氧化鋅奈米線,改善氧化鋅奈米線本身具有的氧脫附的現象。
The paper today are mainly focus on two research subjects. The first issue is about how to grow high quality zinc oxide nanowires. The other is the nanoscale transistor system regulation. How to fabricate high quality zinc oxide nanowires? Many researchers discuss the relationship between oxygen concentation and zinc oxide geometry. In this research, we would discuss this effect in our chemical vapor deposition.
To make zinc oxide nanowires, we use zinc powder as zinc precursor and oxygen gas as oxygen precursor in chemical vapor deposition process. During the growth of zinc oxide nanowire, we discover that the oxygen concentration insufficient. And this condition will lead nanowire to nanobelt. This phenomenon will enhance the oxygen density to turn zinc oxide nanometer belt into zinc oxide nanowire. However, we discovered zinc concentration in gas to will lead zinc oxide nanowire to thin film in this experiment. Therefore, the growth of zinc oxide nanowire needs the right ratio of zinc concentation to the oxygen concentration. In TEM analysis, we discover the growth direction of nanowire is along [0001] direction.
The other part is about the fabrication of nanowire transistor. To make nanowire transistor, we use electrophoresis to arrange nanowire between two electrode. However,we discover the contact between nanowire and electrode is not good enough. So we use heated-die pressing process to solve this problem. The heated-die pressing process is heating the metal so that we can press the nanowire merge into the electrode.This process can improvethe contact between nanowire and electrode.
[1] Sumio Iijima, Nature, 354, 56 (1991)
[2] Y. Cui, Z Zhong, D. Wang,W. U. Wang, Charles M. Lieber, Nano
Lett. 3, 149 (2003)
[3] Fang Qian, Silvija Gradecˇak, Yat Li, Cheng-Yen Wen, C. M. Lieber, Nano Lett. 5, 2287 (2005)
[4] P. Yang, H. Yan, S. Mao,R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Adv. Funct. Mater. 12,323 (2002)
[5]M. Law, H. Kind, F. Kim ,B. Messer, P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002)
[6]http://en.wikipedia.org/wiki/Moore%27s_law
[7]http://en.wikipedia.org/wiki/Immersion_lithography
[8]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Ying, F. Kim,
H. Yan, Adv. Mater. 15, 253 (2003)
[9] R S Wanger and W C Ellis, Appl.Phys. Lett. 4, 89 (1964)
[10] X F Duan and C M Lieber, Adv. Mater. 12, 298 (2000).
[11] X F Duan and C M Lieber, J. Am. Chem. Soc. 122, 188 (2000).
[12] Y Wu and P Yang, J. Am. Chem. Soc. 123, 3165 (2001).
[13] M Yazawa, M Koguchi, A Muto, M Ozawa and K Hiruma, Appl. Phys. Lett. 61, 2051 (1992).
[14] A M Morales and C M Lieber, Science, 279, 208 (1998).
[15] M H Huang, Y Wu, H Feick, N Tran, E Weber and P Yang, Adv. Mater. 13, 113 (2001).
[16] Y C Choi, W S Kim, Y S Park, S M Lee, D J Bae, Y H Lee, G-S Park, W B Choi, N S Lee and J M Kim, Adv. Mater. 12, 746 (2000).
[17] J Hu, M Ouyang, P Yang and C M Lieber, Nature, 399, 48 (1999).
[18] H Omi and T Ogino, Appl. Phys. Lett. 71, 2163 (1997).
[19] A B Greytak, L J Lauhon, M S Gudiksen and C M Lieber, Appl. Phys. Lett. 84, 4176 (2004).
[20] S H Yun, A Dibos, J Z Wu and D-K Kim, Appl. Phys. Lett. 84, 2892 (2004).
[21] D Wang, J G Lu, C J Otten and W E Buhro, Appl. Phys. Lett. 83, 5280 (2003).
[22] C C Chen, C C Yeh, C H Chen, M Y Yu, H L Liu, J J Wu, K H Chen, L C Chen, J Y Peng and Y F Chen, J .Am. Chem. Soc. 123, 2791 (2001).
[23] Y C Zhu, Y Bando, D F Xue and D Golberg, Adv. Mater. 16, 631 (2004).
[24] Q Li, X Gong, C Wang, J Wang, K. ip, S. Hark, Adv. Mater. 16, 1436 (2004).
[25] C Ye, G Meng, Y Wang, Z Jiang, L Zhang, J. Phys. Chem. B 106, 10338 (2002).
[26] K W Chang and J J Wu, J. Phys. Chem. B 106, 7796 (2002).
[27] R Hupta, Q Xiong, G D Mahan and P C Eklund, Nano. Lett. 3, 1745 (2003).
[28] E P A M Bakkers and M A Verheijen, J. Am. Chem. Soc. 125, 3440 (2003).
[29] M S Gudisksen, J Wang and C M Lieber, J. Phys. Chem. B 106, 4036 (2002).
[30] S C Lyu, Y Zhnag, C J Lee, H Ruh and H J Lee, Chem. Mater. 15, 3294 (2003).
[31] P Gao and Z L Wang, J. Phys. Chem. B, 106, 12653 (2002).
[32] C Tang, Y Bando and T Sato, J. Phys. Chem. B, 106, 7449 (2002).
[33] J W Hu, Q Li, X M Meng, C S Lee and S T Lee, J. Phys. Chem. B 106, 9526 (2002).
[34] K W Chang and J J Wu, J. Phys. Chem. B, 108, 1838 (2004).
[35] R.Q. Zhang, T.S. Chu, H.F. Cheung, N. Wang, S.T. Lee. Mater. Sci. Eng. C. 16, 31 (2001).
[36] S T Lee, N Wang and C S Lee, Mater. Sci. Eng. A. 286,16(2000).
[37] H J Fan, R Scholz, F M Kolb and M Zacharias, Appl. Phys. Lett. 85, 4142 (2004).
[38]Y Chen, D M Bagnall, H Koh, K Park, K Hiraga, Z Zhu and T Yao, J. Appl. Phys. 84, 3912 (1998).
[39]A Ohyomo, M Kawasaki, Y Sakurai, I Ohkubo, R Shiroki, Y Yoshida, T Yasuda, Y Segawa and H Koinuma, Mater.Sci. Eng. B. 56, 263 (1998).
[40] W I Park, G C Yi, M Kim and S J Pennycook, Adv. Mater. 15. 526 (2003).
[41] 陳文華, 成功大學化工所碩士論文, 2002.
[42] R A Powell, W E Spicer and J C McMenamin, Phys. Rev. B, 6, 3056 (1972).
[43] D M Hofmann, A Hofstaetter, F Leiter, H Zhou, F Henecker and B K Meyer, S B Orlinskii, J Schmidt and P G Baranov, Phys. Rev. Lett. 88, 045504 (2002).
[44] E G Bylander, J. Appl. Phys. 49, 1188 (1978).
[45] H L Hartnagel, A K Jagadish, Semiconducting Transparent Thin
Films, published by Institute of Physics Publishing (1995).
[46] Z L Wang, Materials Today, 7, 26 (2004).
[47] Y Zhang, N Wang, S Gao, R He, S Miao, J Liu, J Zhu and X Zhang Chem. Mater. 14, 3564 (2002).
[48] B D Yao, Y F Chan, N Wang, Appl. Phys. Lett. 81, 757 (2002)
[49] Y C Kong, D P Yu, B Zhang, W Fang, S Q Feng, Appl. Phys. Lett. 78, 407 (2001).
[50] T Y Kima, J Y Kimb, M S Kumara, E-K Suhb and K S Nahma, J. Cry. Growth. 270, 491 (2004).
[51] L Dai, X L Chen, W J Wang, T Zhou and B Q Hu, J. Phys.: Condens. Matter 15, 2221 (2003).
[52] Y Dai, Y Zhang, Q K Li and C W Nan, Chem. Phys. Lett. 358, 83 (2002).
[53] S C Lyu, Y Zhang, C J Lee, H Ruh and H J Lee, Chem. Mater. 15, 3294 (2003).
[54] S Y Li, C Y Lee and T Y Tseng, J. Cryst. Growth, 247, 357 (2003).
[55] Y Ding, P X Gao and Z L Wang, J. Am. Chem. Soc. 126, 2066 (2004).
[56] Z W Pan, S Dai, C M Rouleau and D H Lowndes, Angew. Chem. Int. Ed. 44, 274 (2005).
[57] W I Park, D H Kim, S W Jung and G C Yi, Appl. Phys. Lett. 80, 4232 (2002).
[58] W I Park, G C Yi, M Y Kim and S J Pennycook, Adv. Mater. 14, 1841 (2002).
[59] S M Sze and K NgKwok, Physics of Semiconductor Devices, 3rd edition, Wiley-Interscience (2007)
[60] Y Huang, X Duan, Q Wei and C M Lieber, Science 291, 630 (2001).
[61] D Whang, S Jin, Y Wu and C M Lieber, Nano Lett. 3, 1255 (2003).
[62] J Chung, K-H Lee, J Lee, R S Rouff, Langmuir 20, 3011 (2004).
[63] C S Lao, J Liu, P Gao, L Zhang, D Davidovic, R Tummala and Z L Wang, Nano Lett. 6, 263 (2006).
[64] G Yu, A Cao and C M Lieber, Nat. Nanotechnol. 2, 372 (2007).
[65] S Myung, M Lee, G T Kim, J S Ha and S Hong, Adv. Mater. 17, 2361 (2005).
[66] S Liu, J B-H Tok, J Locklin, Z Bao, Small 2, 1448 (2006).
[67] Z Fan, J C Ho, Z A Jacobson, R Yerushalm, R L Alley, H Razavi and A Javey, Nano Lett. 8, 20 (2008).
[68] Y Zhang, A Chang, J Cao, Q Wang, W Kim, Y Li, N Morris, E Yenilmez, J Kong and H. Dai, Appl. Phys. Lett. 79, 3155 (2001).
[69] B Nikoobakht, C A Michaels, S J Stranick, M D Vaudin, Appl. Phys. Lett. 85, 3244 (2004).
[70]A Ismach, D Kantorovich, E Joselevich, J. Am. Chem. Soc. 127, 11554 (2005).
[71] S J Kang, C Kocabas, T Ozel, M Shim, N Pimparkar, M A Alam, S V Rotkin and J A Rogers, Nat. Nanotechnol. 2, 230 (2007).
[72] S Huang, M Woodson, R Smalley and J Liu, Nano Lett. 4, 1025 (2004).
[73] S A Studenikin, N Golego and M Cocivera J. Appl. Phys. 84, 2287 (1998).
[74] Y Dong, R M Feenstra, D W Greve, J C Moore, M D Sievert and A A Baski, Appl. Phys. Lett. 86, 121914 (2005).
校內:2020-12-31公開