簡易檢索 / 詳目顯示

研究生: 洪尚廷
Hong, Shang-Ting
論文名稱: 氧化鋅奈米線電晶體製作與分析
Fabrication and Characterization of ZnO Nanowire Transistors
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧化鋅奈米線電晶體
外文關鍵詞: ZnO, Nanowire, transistor
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討兩個研究主題,第一個是氧化鋅奈米線的成長,第二個是奈米線電晶體製程。
    首先,在成長氧化鋅奈米線的部份主要探討氧氣出口位置與濃度對氧化鋅奈米結構型態上之變化。在本研究中採用金屬鋅粉作為鋅反應前驅物,由實驗中發現,在成長氧化鋅奈米線的時候,氧氣濃度不足的會造成有奈米帶的現象,提高氧氣濃度就會使得氧化鋅奈米帶變成氧化鋅奈米線。然而本實驗中還有發現鋅的濃度過高會使得氧化鋅奈米線變成薄膜,因此成長氧化鋅奈米線所需的鋅濃度與氧濃度,哪一個太多或太少都不好,因此如何設計適當的鋅和氧濃度,是成長氧化鋅奈米線必須考慮的,在本論文也有用文獻中的所提到高溫成長氧化鋅奈米線。利用氧化鋅與石墨的結合在高溫時會產生微量的鋅濃度,加上微量的氧濃度,成長出來的氧化鋅奈米線經過TEM與XRD的分析,成長方向均為[0001]。本研究過程中也有發現,控制前驅物中的鋅濃度,會使得成長所需的觸媒在奈米線的末端或者被埋在基板裡。
    除了成長氧化鋅奈米線外,本論文也探討奈米線電晶體的製備。其主要探討在製備奈米線電晶體中,利用介電泳排列奈米線時,奈米線與電極之間的接觸不良,導致接觸電阻極大。在本論文中將使用熱壓法解決接觸不良的問題。熱壓法是利用電極在受熱中金屬韌性提升,使得奈米線陷入電極裡面,達到奈米線與電極接觸變好,最後在使用Epoxy包覆氧化鋅奈米線,改善氧化鋅奈米線本身具有的氧脫附的現象。

    The paper today are mainly focus on two research subjects. The first issue is about how to grow high quality zinc oxide nanowires. The other is the nanoscale transistor system regulation. How to fabricate high quality zinc oxide nanowires? Many researchers discuss the relationship between oxygen concentation and zinc oxide geometry. In this research, we would discuss this effect in our chemical vapor deposition.
    To make zinc oxide nanowires, we use zinc powder as zinc precursor and oxygen gas as oxygen precursor in chemical vapor deposition process. During the growth of zinc oxide nanowire, we discover that the oxygen concentration insufficient. And this condition will lead nanowire to nanobelt. This phenomenon will enhance the oxygen density to turn zinc oxide nanometer belt into zinc oxide nanowire. However, we discovered zinc concentration in gas to will lead zinc oxide nanowire to thin film in this experiment. Therefore, the growth of zinc oxide nanowire needs the right ratio of zinc concentation to the oxygen concentration. In TEM analysis, we discover the growth direction of nanowire is along [0001] direction.
    The other part is about the fabrication of nanowire transistor. To make nanowire transistor, we use electrophoresis to arrange nanowire between two electrode. However,we discover the contact between nanowire and electrode is not good enough. So we use heated-die pressing process to solve this problem. The heated-die pressing process is heating the metal so that we can press the nanowire merge into the electrode.This process can improvethe contact between nanowire and electrode.

    中文摘要 .............................................. I 英文摘要 .............................................. III 致謝 .................................................. IV 目錄 .................................................. VI 表目錄 ................................................ XII 圖目錄 ................................................ XIII 第一章 緒論 ........................................... 1 1-1 前言 ........................................... 1 1-2 奈米科技之發展 ................................. 3 1-3 奈米元件之發展現況 ............................. 5 1-3-1 奈米元件之發展瓶頸 ........................ 5 1-3-2 奈米元件之應用 ............................ 6 1-3-3 全球奈米科技研發趨勢 ...................... 7 1-4 研究動機 ........................... ........... 8 第二章 理論基礎與文獻回顧 ............................. 14 2-1 成長一維的奈米材料方法 ......................... 14 2-1-1 Vapor-Liquid-Solid 機制 ...................... 16 2-1-2 氧化物促進成長法 .......................... 17 2-1-3 Vapor-Solid 機制 ............................ 18 2-2 氧化鋅的結構與特性 ............................. 19 2-3 氧化鋅奈米線之成長 ............................. 21 2-3-1氣-液-固機制成長氧化鋅奈米線 ............... 21 2-4 電晶體簡介 ..................................... 24 2-4-1 場效電晶體 ................................ 24 2-5 FET工作原理與理論計算 .......................... 27 2-5-1 兩端特性 .................................. 27 2-5-2 三端特性 .................................. 27 2-5-3 載子遷移率 ................................ 28 2-5-4 臨界電壓值 ................................ 29 2-5-5 轉移電導值 ................................ 30 2-5-6 開關特性 .................................. 30 2-5-7 次起始擺幅 ................................ 31 2-6 奈米線電晶體研究近況 ........................... 32 2-7 奈米線的組裝 ................................... 34 2-7-1 間接組裝 .................................. 34 2-7-2 直接組裝 .................................. 38 第三章 實驗步驟與方法 ................................. 58 3-1 實驗流程 ....................................... 58 3-2 實驗設備 ....................................... 59 3-2-1 氧化鋅奈米線成長設備 ...................... 59 3-2-1-1管型高溫爐系統 ........................ 59 3-2-1-2 抽氣系統 ............................. 59 3-2-1-3 壓力監控系統 ......................... 59 3-2-1-4 流量控制系統 ......................... 60 3-2-2 元件半導體製程 ............................ 60 3-2-2-1 黃光微影製程 ......................... 60 3-2-2-2 旋轉塗佈儀 ........................... 60 3-2-2-3 單面光罩對準機 ....................... 61 3-2-2-4 電子束蒸鍍機 ......................... 61 3-2-2-5 函數波形產生器 ....................... 62 3-2-2-6 示波器 ............................... 63 3-2-2-7 壓印機 ............................... 63 3-3 實驗材料 ....................................... 64 3-3-1 基板材料 .................................. 64 3-3-2 實驗藥品 .................................. 64 3-3-3 金屬材料 .................................. 64 3-3-4 基板清洗溶劑及實驗氣體 .................... 65 3-4 實驗步驟 ....................................... 66 3-4-1成長高品質又垂直氧化鋅奈米線 ............... 66 3-4-1-1基板前處理 ............................ 66 3-4-1-2成長步驟 .............................. 66 3-4-2 結合介電泳法與熱壓法製備氧化鋅奈米線電晶體 . 67 3-4-2-1 製作奈米線溶液 ....................... 67 3-4-2-2 電極圖案製備流程 ..................... 67 3-4-2-3 介電泳方法排列奈米線 ................. 68 3-4-2-4 高溫壓印 ............................. 69 3-4-2-5 披覆epoxy ............................ 69 3-5實驗鑑定 ........................................ 70 3-5-1 掃描式電子顯微鏡 ....................... 70 3-5-2 穿透式電子顯微鏡 ....................... 71 3-5-3 螢光光譜儀 ............................. 72 3-5-4電性量測系統 ........................... 72 第四章 結果與討論 ..................................... 77 4-1 以VLS機制成長氧化鋅奈米線 .................... 77 4-1-1 探討在不同位置供給氧氣下,對氧化鋅奈米線結構之影 響 ....................................... 78 4-1-1-1 擴散法 ............................... 78 4-1-1-1-1 表面型態分析 .................... 79 4-1-1-1-2 小結 ............................ 79 4-1-1-2 直接法 ............................... 80 4-1-1-2-1 表面型態分析 ..................... 81 4-1-1-2-2 小結 ............................ 81 4-1-2 探討鋅粉在不同氣體流量下,對氧化鋅奈米線結構之影 響 ........................................ 82 4-1-2-1 表面型態分析 ......................... 83 4-1-2-2 小結 ................................. 83 4-1-3 壓力對氧化鋅奈米線成長之影響 .............. 84 4-1-3-1 表面型態分析 ......................... 85 4-1-3-2 微結構分析 ........................... 85 4-1-3-3 穿透式電子顯微鏡分析 ................. 86 4-1-3-4 螢光光譜儀(PL)之光學性質分析 ......... 86 4-1-3-5 前驅物表面積的差異 ................... 87 4-1-3-6 小結 ................................. 87 4-2 結合介電泳法與熱壓法製備氧化鋅奈米線電晶體 ..... 88 4-2-1 以電極厚度為100 nm進行熱壓法 ............. 88 4-2-2 披覆Epoxy 之電晶體製作 ................... 90 4-2-3 小結 ...................................... 91 第五章 總結 .......................................... 106 第六章 參考文獻 ...................................... 108

    [1] Sumio Iijima, Nature, 354, 56 (1991)
    [2] Y. Cui, Z Zhong, D. Wang,W. U. Wang, Charles M. Lieber, Nano
    Lett. 3, 149 (2003)
    [3] Fang Qian, Silvija Gradecˇak, Yat Li, Cheng-Yen Wen, C. M. Lieber, Nano Lett. 5, 2287 (2005)
    [4] P. Yang, H. Yan, S. Mao,R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Adv. Funct. Mater. 12,323 (2002)
    [5]M. Law, H. Kind, F. Kim ,B. Messer, P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002)
    [6]http://en.wikipedia.org/wiki/Moore%27s_law
    [7]http://en.wikipedia.org/wiki/Immersion_lithography
    [8]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Ying, F. Kim,
    H. Yan, Adv. Mater. 15, 253 (2003)
    [9] R S Wanger and W C Ellis, Appl.Phys. Lett. 4, 89 (1964)
    [10] X F Duan and C M Lieber, Adv. Mater. 12, 298 (2000).
    [11] X F Duan and C M Lieber, J. Am. Chem. Soc. 122, 188 (2000).
    [12] Y Wu and P Yang, J. Am. Chem. Soc. 123, 3165 (2001).
    [13] M Yazawa, M Koguchi, A Muto, M Ozawa and K Hiruma, Appl. Phys. Lett. 61, 2051 (1992).
    [14] A M Morales and C M Lieber, Science, 279, 208 (1998).
    [15] M H Huang, Y Wu, H Feick, N Tran, E Weber and P Yang, Adv. Mater. 13, 113 (2001).
    [16] Y C Choi, W S Kim, Y S Park, S M Lee, D J Bae, Y H Lee, G-S Park, W B Choi, N S Lee and J M Kim, Adv. Mater. 12, 746 (2000).
    [17] J Hu, M Ouyang, P Yang and C M Lieber, Nature, 399, 48 (1999).
    [18] H Omi and T Ogino, Appl. Phys. Lett. 71, 2163 (1997).
    [19] A B Greytak, L J Lauhon, M S Gudiksen and C M Lieber, Appl. Phys. Lett. 84, 4176 (2004).
    [20] S H Yun, A Dibos, J Z Wu and D-K Kim, Appl. Phys. Lett. 84, 2892 (2004).
    [21] D Wang, J G Lu, C J Otten and W E Buhro, Appl. Phys. Lett. 83, 5280 (2003).
    [22] C C Chen, C C Yeh, C H Chen, M Y Yu, H L Liu, J J Wu, K H Chen, L C Chen, J Y Peng and Y F Chen, J .Am. Chem. Soc. 123, 2791 (2001).
    [23] Y C Zhu, Y Bando, D F Xue and D Golberg, Adv. Mater. 16, 631 (2004).
    [24] Q Li, X Gong, C Wang, J Wang, K. ip, S. Hark, Adv. Mater. 16, 1436 (2004).
    [25] C Ye, G Meng, Y Wang, Z Jiang, L Zhang, J. Phys. Chem. B 106, 10338 (2002).
    [26] K W Chang and J J Wu, J. Phys. Chem. B 106, 7796 (2002).
    [27] R Hupta, Q Xiong, G D Mahan and P C Eklund, Nano. Lett. 3, 1745 (2003).
    [28] E P A M Bakkers and M A Verheijen, J. Am. Chem. Soc. 125, 3440 (2003).
    [29] M S Gudisksen, J Wang and C M Lieber, J. Phys. Chem. B 106, 4036 (2002).
    [30] S C Lyu, Y Zhnag, C J Lee, H Ruh and H J Lee, Chem. Mater. 15, 3294 (2003).
    [31] P Gao and Z L Wang, J. Phys. Chem. B, 106, 12653 (2002).
    [32] C Tang, Y Bando and T Sato, J. Phys. Chem. B, 106, 7449 (2002).
    [33] J W Hu, Q Li, X M Meng, C S Lee and S T Lee, J. Phys. Chem. B 106, 9526 (2002).
    [34] K W Chang and J J Wu, J. Phys. Chem. B, 108, 1838 (2004).
    [35] R.Q. Zhang, T.S. Chu, H.F. Cheung, N. Wang, S.T. Lee. Mater. Sci. Eng. C. 16, 31 (2001).
    [36] S T Lee, N Wang and C S Lee, Mater. Sci. Eng. A. 286,16(2000).
    [37] H J Fan, R Scholz, F M Kolb and M Zacharias, Appl. Phys. Lett. 85, 4142 (2004).
    [38]Y Chen, D M Bagnall, H Koh, K Park, K Hiraga, Z Zhu and T Yao, J. Appl. Phys. 84, 3912 (1998).
    [39]A Ohyomo, M Kawasaki, Y Sakurai, I Ohkubo, R Shiroki, Y Yoshida, T Yasuda, Y Segawa and H Koinuma, Mater.Sci. Eng. B. 56, 263 (1998).
    [40] W I Park, G C Yi, M Kim and S J Pennycook, Adv. Mater. 15. 526 (2003).
    [41] 陳文華, 成功大學化工所碩士論文, 2002.
    [42] R A Powell, W E Spicer and J C McMenamin, Phys. Rev. B, 6, 3056 (1972).
    [43] D M Hofmann, A Hofstaetter, F Leiter, H Zhou, F Henecker and B K Meyer, S B Orlinskii, J Schmidt and P G Baranov, Phys. Rev. Lett. 88, 045504 (2002).
    [44] E G Bylander, J. Appl. Phys. 49, 1188 (1978).
    [45] H L Hartnagel, A K Jagadish, Semiconducting Transparent Thin
    Films, published by Institute of Physics Publishing (1995).
    [46] Z L Wang, Materials Today, 7, 26 (2004).
    [47] Y Zhang, N Wang, S Gao, R He, S Miao, J Liu, J Zhu and X Zhang Chem. Mater. 14, 3564 (2002).
    [48] B D Yao, Y F Chan, N Wang, Appl. Phys. Lett. 81, 757 (2002)
    [49] Y C Kong, D P Yu, B Zhang, W Fang, S Q Feng, Appl. Phys. Lett. 78, 407 (2001).
    [50] T Y Kima, J Y Kimb, M S Kumara, E-K Suhb and K S Nahma, J. Cry. Growth. 270, 491 (2004).
    [51] L Dai, X L Chen, W J Wang, T Zhou and B Q Hu, J. Phys.: Condens. Matter 15, 2221 (2003).
    [52] Y Dai, Y Zhang, Q K Li and C W Nan, Chem. Phys. Lett. 358, 83 (2002).
    [53] S C Lyu, Y Zhang, C J Lee, H Ruh and H J Lee, Chem. Mater. 15, 3294 (2003).
    [54] S Y Li, C Y Lee and T Y Tseng, J. Cryst. Growth, 247, 357 (2003).
    [55] Y Ding, P X Gao and Z L Wang, J. Am. Chem. Soc. 126, 2066 (2004).
    [56] Z W Pan, S Dai, C M Rouleau and D H Lowndes, Angew. Chem. Int. Ed. 44, 274 (2005).
    [57] W I Park, D H Kim, S W Jung and G C Yi, Appl. Phys. Lett. 80, 4232 (2002).
    [58] W I Park, G C Yi, M Y Kim and S J Pennycook, Adv. Mater. 14, 1841 (2002).
    [59] S M Sze and K NgKwok, Physics of Semiconductor Devices, 3rd edition, Wiley-Interscience (2007)
    [60] Y Huang, X Duan, Q Wei and C M Lieber, Science 291, 630 (2001).
    [61] D Whang, S Jin, Y Wu and C M Lieber, Nano Lett. 3, 1255 (2003).
    [62] J Chung, K-H Lee, J Lee, R S Rouff, Langmuir 20, 3011 (2004).
    [63] C S Lao, J Liu, P Gao, L Zhang, D Davidovic, R Tummala and Z L Wang, Nano Lett. 6, 263 (2006).
    [64] G Yu, A Cao and C M Lieber, Nat. Nanotechnol. 2, 372 (2007).
    [65] S Myung, M Lee, G T Kim, J S Ha and S Hong, Adv. Mater. 17, 2361 (2005).
    [66] S Liu, J B-H Tok, J Locklin, Z Bao, Small 2, 1448 (2006).
    [67] Z Fan, J C Ho, Z A Jacobson, R Yerushalm, R L Alley, H Razavi and A Javey, Nano Lett. 8, 20 (2008).
    [68] Y Zhang, A Chang, J Cao, Q Wang, W Kim, Y Li, N Morris, E Yenilmez, J Kong and H. Dai, Appl. Phys. Lett. 79, 3155 (2001).
    [69] B Nikoobakht, C A Michaels, S J Stranick, M D Vaudin, Appl. Phys. Lett. 85, 3244 (2004).
    [70]A Ismach, D Kantorovich, E Joselevich, J. Am. Chem. Soc. 127, 11554 (2005).
    [71] S J Kang, C Kocabas, T Ozel, M Shim, N Pimparkar, M A Alam, S V Rotkin and J A Rogers, Nat. Nanotechnol. 2, 230 (2007).
    [72] S Huang, M Woodson, R Smalley and J Liu, Nano Lett. 4, 1025 (2004).
    [73] S A Studenikin, N Golego and M Cocivera J. Appl. Phys. 84, 2287 (1998).
    [74] Y Dong, R M Feenstra, D W Greve, J C Moore, M D Sievert and A A Baski, Appl. Phys. Lett. 86, 121914 (2005).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE