| 研究生: |
王柏鈞 Wang, Po-Chun |
|---|---|
| 論文名稱: |
TPMS結構:3D列印運動鞋中底結構減震能力評估 TRIPLY PERIODIC MINIMAL SURFACE STRUCTURE: ASSESSING SHOCK ABSORPTION IN 3D-PRINTED ATHLETIC SHOES MIDSOLE |
| 指導教授: |
邱宏達
Chiu, Hung-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 三重週期性最小表面 、運動鞋 、中底 、能量吸收 |
| 外文關鍵詞: | TPMS, Shoes, Midsole, Energy absorption |
| 相關次數: | 點閱:39 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
緒論:自運動浪潮開始後運動鞋的輕量化和減震能力一直都是評量運動鞋跑步經濟性(Running Economy)的重要指標(跑步經濟性詳見名詞操作型定義),各家運動鞋廠商相繼祭出新的材料以及結構追求輕量化和減震能力。TPMS結構是在19世紀就發現的幾何多孔結構,因平均曲率為零具備相較目前較常見的蜂巢和體心結構(BCC)具備更高的結構強度和能量分散的能力且同時具備多孔結構的特性,可能可以同時達成輕量化以及提升減震能力。
方法:本研究擬以光固化3D列印製作5種TPMS-Sheet結構,分別為Diamond、Gyroid、IWP、Neovius、Primitive,在三種相對密度分別為20%、30%、40%下進行撞擊測試。撞擊條件為高度30mm、重量8.2kg模擬人體慢跑的足跟撞擊。最後使用加速規紀錄時間和加速度的變化,先以butterworth 4th 低通道濾波器以288Hz進行資料處理,通過黎曼積分計算其壓縮量、平均加速度和吸收能量等數據用以評估各結構的減震能力,並比較單以加速度峰值作為減震評估依據的差異。
結果:在相對密度20%、30%、40%三種狀況下減震能力最佳的結構皆為Primitive,吸收能量的百分比在相對密度20%時是84.36%、在相對密度30%時是49.82%、在相對密度40%時是45.57%,且發現機械式的撞擊頭在撞擊過程中會出現4.2-7.7%的撞擊速度損失,其撞擊速度損失的因素可能來源於滑軌以及人為釋放撞擊頭。在所有的撞擊測試中撞擊頭壓縮後的反彈高度皆沒有超過對中底產生的壓縮量,表示其反彈時撞擊頭並沒有和中底分離;無法以反彈後的高度有效換算反彈位能。其反彈後的高度換算的反彈位能亦沒有明顯的趨勢。
討論:無論以加速度峰值大小抑或是能量吸收百分比皆表示Primitive是最佳的減震結構,單以加速度峰值測量無法考量到機械式撞擊測試器以及人為釋放撞擊頭產生的撞擊速度誤差,使用吸收能量百分比可能為更佳的減震能力評估方式。但Primitive在相對密度20%達最大壓縮量的時間為99.69ms大於以3.6m/s速度慢跑時產生的足跟撞擊時長40-50ms,表示其減震壓縮的時間和實際跑步的時間不相符,其結果可能也與材料特性相關,未來的研究亦可以朝這個方向發展。本研究僅提供撞擊測試的相關數據以及評估作為設計運動鞋中底的參考。
The present study evaluates the shock-absorbing capabilities of Triply Periodic Minimal Surface (TPMS) structures in athletic shoes. Using LCD 3D printing, five TPMS-Sheet structures are involved in the study: Diamond, Gyroid, IWP, Neovius, and Primitive. The relative densities (relative to resin) of the abovementioned structures are 20%, 30%, and 40%. Impact tests simulated jogging using 8.2kg impact head dropped from 30mm high. Results showed the Primitive structure had the best shock absorption, with energy absorption percentages of 84.36% at 20%, 49.82% at 30%, and 45.57% at 40% relative density. Despite the Primitive structure's effectiveness, its time to maximum compression (99.69ms) exceeds typical jogging heel strike duration (40-50ms), indicating a need for further research into material properties. The study provides essential data for designing athletic shoes midsole.
楊榮森 (2019)。3D 列印科技的原理與應用。台灣醫學,23(1), 41-47。
邱宏達、相子元、林德嘉(2001)。由地面反作用力評估鞋低避震能力─材料與人體測試之比較。體育學報,(32),69-78。https://doi.org/10.6222/pej.0032.200109.5636
劉華博, 孟凡淨, 花少震 & 王浩(2021)。 三維印刷半透明材料本構關係及應用探討。 河南理工大學學報 (自然科學版), 40(6)。
梁日蕾, & 邱宏達. (2011). 不同步態在足跟著地時下肢運動學與撞擊能量之關係. 華人運動生物力學期刊, (5), 8-14.
Reinschmidt, C., & Nigg, B. M. (2000). Current issues in the design of running and court shoes. Sportverletzung Sportschaden : Organ der Gesellschaft fur Orthopadisch-Traumatologische Sportmedizin, 14(3), 71–81. https://doi.org/10.1055/s-2000-7866
Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports medicine (Auckland, N.Z.), 34(7), 465–485. https://doi.org/10.2165/00007256-200434070-00005
Xiao, Y., Hu, D., Zhang, Z., Pei, B., Wu, X., & Lin, P. (2022). A 3D-Printed Sole Design Bioinspired by Cat Paw Pad and Triply Periodic Minimal Surface for Improving Paratrooper Landing Protection. Polymers, 14(16), 3270. https://doi.org/10.3390/polym14163270
Rajagopalan, S., & Robb, R. A. (2006). Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Medical image analysis, 10(5), 693-712. https://doi.org/10.1016/j.media.2006.06.001
Qiu, N., Wan, Y., Shen, Y., & Fang, J. (2023). Experimental and numerical studies on mechanical properties of TPMS structures. International Journal of Mechanical Sciences, 108657. https://doi.org/10.1016/j.ijmecsci.2023.108657
Al-Ketan, O., Lee, D. W., Rowshan, R., & Abu Al-Rub, R. K. (2020). Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. Journal of the mechanical behavior of biomedical materials, 102, 103520. https://doi.org/10.1016/j.jmbbm.2019.103520
Forés-Garriga, A., Gómez-Gras, G., & Pérez, M. A. (2023). Additively manufactured three-dimensional lightweight cellular solids: Experimental and numerical analysis. Materials & Design, 226, 111641. https://doi.org/10.1016/j.matdes.2023.111641
Abou-Ali, A. M., Al-Ketan, O., Lee, D. W., Rowshan, R., & Abu Al-Rub, R. K. A. (2020). Mechanical behaviour of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Materials & Design, 196, 109100. https://doi.org/10.1016/j.matdes.2020.109100
Holzmann, P., Breitenecker, R. J., Soomro, A. A., & Schwarz, E. J. (2017). User entrepreneur business models in 3D printing. Journal of Manufacturing Technology Management, 28(1), 75-94. https://doi.org/10.1108/JMTM-12-2015-0115
Lee, J. Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied materials today, 7, 120-133. https://doi.org/10.1016/j.apmt.2017.02.004
Feng Zhang, Liya Zhu, Zongan Li, Shiyan Wang, Jianping Shi, Wenlai Tang, Na Li, Jiquan Yang. (2021). The recent development of vat photopolymerization: A review. Additive Manufacturing, 48, 102423. https://doi.org/10.1016/j.addma.2021.102423
Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., & Zhu, X. (2020). Photo-curing 3D printing technique and its challenges. Bioactive materials, 5(1), 110-115. https://doi.org/10.1016/j.bioactmat.2019.12.003
Miller, J. E., Nigg, B. M., Liu, W., Stefanyshyn, D. J., & Nurse, M. A. (2000). Influence of foot, leg and shoe characteristics on subjective comfort. Foot & Ankle International, 21(9), 759-767. https://doi.org/10.1177/107110070002100908
Clermont, C., Barrons, Z. B., Esposito, M., Dominguez, E., Culo, M., Wannop, J. W., & Stefanyshyn, D. (2023). The influence of midsole shear on running economy and smoothness with a 3D-printed midsole. Sports biomechanics, 22(3), 410–421. https://doi.org/10.1080/14763141.2022.2029936
Abueidda, D. W., Bakir, M., Al-Rub, R. K. A., Bergström, J. S., Sobh, N. A., & Jasiuk, I. (2017). Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials & Design, 122, 255-267. https://doi.org/10.1016/j.matdes.2017.03.018
Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., & Hague, R. J. (2018). Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer, 152, 62-71. https://doi.org/10.1016/j.polymer.2017.11.049
Kaelin, X., Denoth, J., Stacoff, A., & Stuessi, E. (1985). Cushioning during running—material tests contra subject tests. In Biomechanics: Current Interdisciplinary Research: Selected proceedings of the Fourth Meeting of the European Society of Biomechanics in collaboration with the European Society of Biomaterials, September 24–26, 1984, Davos, Switzerland (pp. 651-656). Springer Netherlands.
Bobbert, M. F., Schamhardt, H. C., & Nigg, B. M. (1991). Calculation of vertical ground reaction force estimates during running from positional data. Journal of biomechanics, 24(12), 1095-1105. https://doi.org/10.1016/0021-9290(91)90002-5
Zhang, L., Feih, S., Daynes, S., Chang, S., Wang, M. Y., Wei, J., & Lu, W. F. (2018). Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Additive Manufacturing, 23, 505-515. https://doi.org/10.1016/j.addma.2018.08.007
Moussa, A., Rahman, S., Xu, M., Tanzer, M., & Pasini, D. (2020). Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. Journal of the mechanical behavior of biomedical materials, 105, 103705. https://doi.org/10.1016/j.jmbbm.2020.103705
Zolfagharian, A., Lakhi, M., Ranjbar, S., & Bodaghi, M. (2021). Custom shoe sole design and modeling toward 3D printing. International Journal of Bioprinting, 7(4). 10.18063/ijb.v7i4.396
Sadeghi, F., Baniassadi, M., Shahidi, A., & Baghani, M. (2023). TPMS metamaterial structures based on shape memory polymers: Mechanical, thermal and thermomechanical assessment. Journal of Materials Research and Technology, 23, 3726-3743. https://doi.org/10.1016/j.jmrt.2023.02.014
Gillespie, K. A., & Dickey, J. P. (2003). Determination of the effectiveness of materials in attenuating high frequency shock during gait using filterbank analysis. Clinical Biomechanics, 18(1), 50-59. https://doi.org/10.1016/S0268-0033(02)00171-7
Nigg, B. M., Baltich, J., Hoerzer, S., & Enders, H. (2015). Running shoes and running injuries: mythbusting and a proposal for two new paradigms:‘preferred movement path’and ‘comfort filter’. British journal of sports medicine, 49(20), 1290-1294. https://doi.org/10.1136/bjsports-2015-095054
Horvais, N., Samozino, P., Chiementin, X., Morin, J. B., & Giandolini, M. (2019). Cushioning perception is associated with both tibia acceleration peak and vibration magnitude in heel-toe running. Footwear Science, 11(1), 35-44. https://doi.org/10.1080/19424280.2018.1555863
Wang, L., Lau, J., Thomas, E. L., & Boyce, M. C. (2011). Co‐continuous composite materials for stiffness, strength, and energy dissipation. Advanced Materials, 23(13), 1524.
Wadley, H. N. (2006). Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 31-68. https://doi.org/10.1098/rsta.2005.1697
Holzmann, P., Breitenecker, R.J., Soomro, A.A. and Schwarz, E.J. (2017), "User entrepreneur business models in 3D printing", Journal of Manufacturing Technology Management, Vol. 28 No. 1, pp. 75-94. https://doi.org/10.1108/JMTM-12-2015-0115
Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., ... & Martina, F. (2016). Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP annals, 65(2), 737-760. https://doi.org/10.1016/j.cirp.2016.05.004
Worobets, J., Wannop, J. W., Tomaras, E., & Stefanyshyn, D. (2014). Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Science, 6(3), 147-153. https://doi.org/10.1080/19424280.2014.918184
校內:2029-07-04公開