| 研究生: |
高銓佑 Kao, Chuan-Yu |
|---|---|
| 論文名稱: |
探討IRSp53之異構體-IRSp58M在大腸直腸癌所扮演的角色 Study the role of IRSp58M in colorectal cancer |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 大腸直腸癌 、Eps8 、IRSp53S 、IRSp58M 、SW480 、細胞凋亡 |
| 外文關鍵詞: | colorectal cancer, Eps8, IRSp53S, IRSp58M, SW480, apoptosis |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表皮生長因子(EGFR)在大腸直腸癌的發展之中扮演很重要的角色。作為EGFR的下游受體,Eps8在許多種癌症都有過度表達的現象,其中也包含大腸直腸癌。Eps8蛋白質包含了proline-rich序列,有助於和Src的SH3 domain進行交互作用,並加以活化下游的FAK,導致細胞遷移及增生能力的上升。在我們實驗室之前的研究中發現,IRSp53也會和Eps8參與在v-Src調控的癌變當中。已知IRSp53會和Eps8進行交互作用,Cdc42也可以和IRSp53的CRIB domain進行交互作用。這些蛋白質聚合體會活化IRSp53,進而使其移動到細胞膜上而促使絲狀偽足(filopodia)的形成。Eps8和IRSp53的交互作用也被證實能夠藉由誘導Rac的活性來促進human fibrosarcoma cell的移動性及侵略性。在本篇研究之中,我們確認了在實驗室之前所看到IRSp53S在大腸癌細胞中扮演著負調控生長的角色。除此之外,同時表達Eps8及IRSp53S在SW480細胞中會促進細胞凋亡的發生,藉此指出IRSp53S抑制腫瘤的角色。不像IRSp53S,IRSp58M在細胞培養及Soft agar中都看到會促進大腸直腸癌細胞的生長。除此之外,藉由TCGA database我們也發現IRSp58M和大腸直腸癌患者的無病死亡率有著負相關,指出IRSp58M在大腸直腸癌扮演著促進的角色。
Epidermal growth factor receptor (EGFR) plays an important role in the progression of colorectal cancer (CRC). As a downstream substrate of EGFR, epidermal growth factor pathway substrate number 8 (Eps8) is highly overexpressed in several human cancers, including CRC. Eps8 protein contains proline-rich regions to interact with the SH3 domain of Src, leading to the activation of focal adhesion kinase (FAK) and increased cell migration and cell proliferation in CRC cells. Previous studies in our lab have shown that insulin receptor tyrosine kinase substrate protein of 53 kDa (IRSp53) may also interact with Eps8 participating in v-Src-mediated transformation. It is known that when IRSp53 interacts with Eps8, Cdc42 will also interact with the CRIB domain of IRSp53. This protein complex will translocate to cell membrane to promote the formation of filopodia. The interaction of Eps8-IRSp53 has also been proved to promote migration and invasion in human fibrosarcoma cell by inducing Rac activity. In this study, we confirmed our previous findings that IRSp53S might play a negative role in promoting cell proliferation in CRC. Furthermore, double co-overexpressing IRSp53S and Eps8 promotes apoptosis in SW480 cells, indicating tumor suppressor role of IRSp53S. Unlike IRSp53S decreased colony formation in SW480 cells, overexpression of IRSp58M promoted the growth of CRC cells in both culture dish and soft agar. Furthermore, the expression of IRSp58M is negatively correlated with the disease free survival in CRC in TCGA database, suggesting IRSp58M has an oncogenic role in CRC.
Armaghany, T., Wilson, J. D., Chu, Q., & Mills, G. (2012). Genetic alterations in colorectal cancer. Gastrointest Cancer Res, 5(1), 19-27.
Candé, C., Cohen, I., Daugas, E., Ravagnan, L., Larochette, N., Zamzami, N.,
& Kroemer, G. (2002). Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 84(2-3), 215-222. doi:10.1016/s0300-9084(02)01374-3
Chen, C., Liang, Z., Huang, W., Li, X., Zhou, F., Hu, X., . . . Xiang, S. (2015). Eps8 regulates cellular proliferation and migration of breast cancer. Int J Oncol, 46(1), 205-214. doi:10.3892/ijo.2014.2710
Chen, G., Ding, X. F., Bouamar, H., Pressley, K., & Sun, L. Z. (2019). Everolimus induces G(1) cell cycle arrest through autophagy-mediated protein degradation of cyclin D1 in breast cancer cells. Am J Physiol Cell Physiol, 317(2), C244-c252. doi:10.1152/ajpcell.00390.2018
Chen, H., Wu, X., Pan, Z. K., & Huang, S. (2010). Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res, 70(23), 9979-9990. doi:10.1158/0008-5472.Can-10-2394
Chuang, J. P., Kao, C. Y., Lee, J. C., Ling, P., Maa, M. C., & Leu, T. H. (2020). EPS8 regulates an NLRP3 inflammasome-independent caspase-1 activation pathway in monosodium urate crystal-treated RAW264.7 macrophages. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2020.05.084
Ding, W. X., & Yin, X. M. (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem, 393(7), 547-564. doi:10.1515/hsz-2012-0119
Disanza, A., Bisi, S., Winterhoff, M., Milanesi, F., Ushakov, D. S., Kast, D., . . .Scita, G. (2013). CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. Embo j, 32(20), 2735-2750. doi:10.1038/emboj.2013.208
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516. doi:10.1080/01926230701320337
Fink, S. L., & Cookson, B. T. (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun, 73(4), 1907-1916. doi:10.1128/iai.73.4.1907-1916.2005
Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., & Miki, H. (2004). IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res, 64(15), 5237-5244. doi:10.1158/0008-5472.Can-04-0327
Giam, M., Huang, D. C., & Bouillet, P. (2008). BH3-only proteins and their roles in programmed cell death. Oncogene, 27 Suppl 1, S128-136. doi:10.1038/onc.2009.50
Govind, S., Kozma, R., Monfries, C., Lim, L., & Ahmed, S. (2001). Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol, 152(3), 579-594. doi:10.1083/jcb.152.3.579
Guan, J. L., Simon, A. K., Prescott, M., Menendez, J. A., Liu, F., Wang, F., . . . Zhang, J. (2013). Autophagy in stem cells. Autophagy, 9(6), 830-849. doi:10.4161/auto.24132
Gustavsson, B., Carlsson, G., Machover, D., Petrelli, N., Roth, A., Schmoll, H. J., . . . Gibson, F. (2015). A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer, 14(1), 1-10. doi:10.1016/j.clcc.2014.11.002
Huang, R., Liu, H., Chen, Y., He, Y., Kang, Q., Tu, S., . . . Li, Y. (2018). EPS8 regulates proliferation, apoptosis and chemosensitivity in BCR-ABL positive cells via the BCR-ABL/PI3K/AKT/mTOR pathway. Oncol Rep, 39(1), 119-128. doi:10.3892/or.2017.6102
Ishizuka, N., Yagui, K., Tokuyama, Y., Yamada, K., Suzuki, Y., Miyazaki, J., . . . Kanatsuka, A. (1999). Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells. Metabolism, 48(12), 1485-1492. doi:10.1016/s0026-0495(99)90234-2
Jasperson, K. W., Tuohy, T. M., Neklason, D. W., & Burt, R. W. (2010). Hereditary and familial colon cancer. Gastroenterology, 138(6), 2044-2058. doi:10.1053/j.gastro.2010.01.054
Jiang, X., & Wang, X. (2004). Cytochrome C-mediated apoptosis. Annu Rev Biochem, 73, 87-106. doi:10.1146/annurev.biochem.73.011303.073706
Jin, S. M., & Youle, R. J. (2012). PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci, 125(Pt 4), 795-799. doi:10.1242/jcs.093849
Kang, J., Park, H., & Kim, E. (2016). IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology, 100, 27-39. doi:10.1016/j.neuropharm.2015.06.019
Kast, D. J., & Dominguez, R. (2019a). IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration. Mol Biol Cell, 30(11), 1285-1297. doi:10.1091/mbc.E18-09-0600
Kast, D. J., & Dominguez, R. (2019b). Mechanism of IRSp53 inhibition by 14-3-3. Nat Commun, 10(1), 483. doi:10.1038/s41467-019-08317-8
Kast, D. J., Yang, C., Disanza, A., Boczkowska, M., Madasu, Y., Scita, G., . . .Dominguez, R. (2014). Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat Struct Mol Biol, 21(4), 413-422. doi:10.1038/nsmb.2781
Kaushik, S., & Cuervo, A. M. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol, 22(8), 407-417. doi:10.1016/j.tcb.2012.05.006
Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J., & Hall, A. (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol, 11(21), 1645-1655. doi:10.1016/s0960-9822(01)00506-1
Leu, T. H., Yeh, H. H., Huang, C. C., Chuang, Y. C., Su, S. L., & Maa, M. C. (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem, 279(11), 9875-9881. doi:10.1074/jbc.M309884200
Li, J., & Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene, 27(48), 6194-6206. doi:10.1038/onc.2008.297
Liu, P. S., Jong, T. H., Maa, M. C., & Leu, T. H. (2010). The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene, 29(27), 3977-3989. doi:10.1038/onc.2010.144
Maa, M.-C., & Leu, T.-H. (2013). EPS8, an adaptor protein acts as an oncoprotein in human cancer. Carcinogenesis, 87.
Maa, M. C., Lee, J. C., Chen, Y. J., Chen, Y. J., Lee, Y. C., Wang, S. T., . . . Leu, T. H. (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem, 282(27), 19399-19409. doi:10.1074/jbc.M610280200
Man, S. M., Karki, R., & Kanneganti, T. D. (2017). Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev, 277(1), 61-75. doi:10.1111/imr.12534
McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol, 5(4), a008656. doi:10.1101/cshperspect.a008656
Morales, J., Li, L., Fattah, F. J., Dong, Y., Bey, E. A., Patel, M., . . . Boothman, D. A. (2014). Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr, 24(1), 15-28. doi:10.1615/critreveukaryotgeneexpr.2013006875
Naffa, R., Vogel, L., Hegedűs, L., Pászty, K., Tóth, S., Kelemen, K., . . . Enyedi, Á. (2020). P38 MAPK Promotes Migration and Metastatic Activity of BRAF Mutant Melanoma Cells by Inducing Degradation of PMCA4b. Cells, 9(5). doi:10.3390/cells9051209
Pappou, E. P., & Ahuja, N. (2010). The role of oncogenes in gastrointestinal cancer. Gastrointest Cancer Res(Suppl 1), S2-s15.
Peng, Y.-R. (2016). Study the role of IRSp53 isoforms in colorectal cancer.
Pobezinskaya, Y. L., & Liu, Z. (2012). The role of TRADD in death receptor signaling. Cell Cycle, 11(5), 871-876. doi:10.4161/cc.11.5.19300
Ramakrishnan, S., Nguyen, T. M., Subramanian, I. V., & Kelekar, A. (2007). Autophagy and angiogenesis inhibition. Autophagy, 3(5), 512-515. doi:10.4161/auto.4734
Rebecca, V. W., Nicastri, M. C., McLaughlin, N., Fennelly, C., McAfee, Q., Ronghe, A., . . . Amaravadi, R. K. (2017). A Unified Approach to Targeting the Lysosome's Degradative and Growth Signaling Roles. Cancer Discov, 7(11), 1266-1283. doi:10.1158/2159-8290.Cd-17-0741
Robens, J. M., Yeow-Fong, L., Ng, E., Hall, C., & Manser, E. (2010). Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization. Mol Cell Biol, 30(3), 829-844. doi:10.1128/mcb.01574-08
Schoenherr, C., Serrels, B., Proby, C., Cunningham, D. L., Findlay, J. E., Baillie, G. S., . . . Frame, M. C. (2014). Eps8 controls Src- and FAK-dependent phenotypes in squamous carcinoma cells. J Cell Sci, 127(Pt 24), 5303-5316. doi:10.1242/jcs.157560
Shi, J., Gao, W., & Shao, F. (2017). Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci, 42(4), 245-254. doi:10.1016/j.tibs.2016.10.004
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., . . . Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660-665. doi:10.1038/nature15514
Skarkova, V., Kralova, V., Vitovcova, B., & Rudolf, E. (2019). Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma-A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells, 8(3). doi:10.3390/cells8030234
Tsuchiya, K., Nakajima, S., Hosojima, S., Thi Nguyen, D., Hattori, T., Manh Le, T., . . . Suda, T. (2019). Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun, 10(1), 2091. doi:10.1038/s41467-019-09753-2
Vaggi, F., Disanza, A., Milanesi, F., Di Fiore, P. P., Menna, E., Matteoli, M., . . . Ciliberto, A. (2011). The Eps8/IRSp53/VASP network differentially controls actin capping and bundling in filopodia formation. PLoS Comput Biol, 7(7),e1002088. doi:10.1371/journal.pcbi.1002088
Wang, Y.-H. (2019). Establishing IRSp53S-inducible SW480 colorectal cancer cell lines and studying how IRSp53S affects cell proliferation in colon cancer cells.
Welsch, T., Younsi, A., Disanza, A., Rodriguez, J. A., Cuervo, A. M., Scita, G., & Schmidt, J. (2010). Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells. Exp Cell Res, 316(12), 1914-1924. doi:10.1016/j.yexcr.2010.02.020
Xu, X., Lai, Y., & Hua, Z. C. (2019). Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep, 39(1). doi:10.1042/bsr20180992
Yang, J., Zhao, Y., & Shao, F. (2015). Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol, 32, 78-83. doi:10.1016/j.coi.2015.01.007
Yuan, S., & Akey, C. W. (2013). Apoptosome structure, assembly, and procaspase activation. Structure, 21(4), 501-515. doi:10.1016/j.str.2013.02.024
Zhang, J., & Ney, P. A. (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ, 16(7), 939-946. doi:10.1038/cdd.2009.16
校內:2025-08-01公開