簡易檢索 / 詳目顯示

研究生: 黃裕晟
Hwang, Yu-Shenq
論文名稱: 應用微分轉換法於振動問題之研究
Application of The Differential Transformation Method to Vibration Problems
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 振動模態自然頻率微分轉換
外文關鍵詞: Differential transform, Natural frequency, Mode shape
相關次數: 點閱:131下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文運用微分轉換法求解Bernoulli-Euler樑及非均勻柱體之振動問題。利用Hamilton原理推導系統之統御偏微分運動方程和時變彈性邊界條件。文中首先介紹微分轉換理論的基本定義、性質及演算方法,然後介紹此法在各種問題上的應用,並以Sturm-Liouville問題為例來說明如何應用此一理論配合符號運算求解其特徵值及特徵函數,進而就Bernoulli-Euler樑及柱體,應用微分變換法分析不同條件下之振動問題。
      研究結果顯示使用微分轉換法進行模擬求解與其他方法相比較所需的運算處理時間較為短暫。有別於以往運用積分運算求解的方法,以微分轉換法求解各類問題省去了冗長及繁雜的變換程序,不僅顯得簡易且將更具系統性。而由微分轉換法所得到的結果,與解析解做比較,其誤差為約只有10-4之極小值,由此可見微分轉換法是求解線性或非線性微分方程式的有力工具。

      This study introduces a method using differential transforms to solve the vibration problems of Bernoulli-Euler beam and non-uniform column. Applying Hamilton’s principle, the governing equations and boundary conditions of Bernoulli-Euler beam and non-uniform column are derived. The basic definitions and properties of the differential transformation method were introduced briefly and the applications of this method on the many problems were displayed later, and the Sturm-Liouville problem is considered to demonstrate how to find eigenvalues and eigenfunction by using the differential transformation method and symbolic computations. Moreover, considering Bernoulli-Euler beam and non-uniform column, differential transforms are applied to solve the vibration problem of these structures under different conditions.
      The results of this research show that applying the method on the simulation procedure consumes less CPU time as compared with other methods. Unlike other integral transform methods, using the differential transform to solve many problems leaves out the copious and complex transform procedure and appears not only brief but also more systematical. The errors between the simulation results and the analytical solutions were very small, hence, the differential transformation method is a useful tool in solving linear and nonlinear equations.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 表 目 錄 VIII 圖 目 錄 IX 符號說明 XIII 第一章 緒論 1 1.1研究動機及目的 1 1.2文獻回顧 2 1.3本文架構 4 第二章 微分轉換法 5 2.1前言 5 2.2微分轉換的數學原理 5 2.3微分轉換的運算 8 2.4 微分轉換法在初始值問題之應用 14 2.5 T譜儲存法 16 2.6 微分轉換法在特徵值問題之應用 18 第三章 非均勻Bernoulli-Euler樑之振動問題 21 3.1 非均勻Bernoulli-Euler樑統御方程及邊界條件 21 3.2 分析非均勻樑自由振動情形 24 3.2.1 無因次化統御方程式與邊界條件 25 3.2.2 微分轉換法 26 3.3 分析非均勻樑強制振動情形 30 3.3.1 無因次化統御方程式與邊界條件 30 3.3.2 微分轉換法 31 3.4 均勻懸臂樑問題之分析 33 3.4.1 微分轉換法 33 3.4.2 解析解 37 3.5 非均勻懸臂樑問題之分析 38 3.5.1 自由振動情形 38 3.5.2 強制振動情形 43 第四章 儲水高塔之振動問題 59 4.1 非均勻柱統御方程及邊界條件 59 4.2 分析無受力非均勻柱之情形 61 4.2.1 統御方程及邊界條件 61 4.2.2 無因次化統御方程式與邊界條件 62 4.2.3 微分轉換法 63 4.2.4 均勻問題分析 64 4.3 分析受風力影響之非均勻柱情形 69 4.3.1 統御方程及邊界條件 70 4.3.2 無因次化統御方程式與邊界條件 71 4.3.3 微分轉換法 72 4.3.4均勻問題分析 73 4.4 分析受地震力影響之非均勻柱情形 78 4.4.1 統御方程及邊界條件 78 4.4.2 微分轉換法 78 4.4.3 均勻問題分析 78 4.5 分析受風力及地震力影響之非均勻柱情形 82 4.5.1統御方程及邊界條件 82 4.5.2 微分轉換法 82 4.5.3 均勻問題分析 83 第五章 結論與建議 101 5-1結論 101 5-2建議 102 參考文獻 103 附錄A 均勻Bernoulli-Euler樑統御方程及邊界條件之推導 106 A.1統御方程及邊界條件之推導 106 A.2自然頻率與振動模態 108 自 述 112

    [1]趙家奎, 微分轉換及其在電路中的應用, 華中理工大學出版社, 1986.
    [2]C.L. Chen, Y.C. Liu, “Solution of two -boundary-value problems using the differential transformation method, ” Journal of optimization theory and application ,vol.99 ,pp. 23-35, 1998.
    [3]M.J. Jang, C.L. Chen, Y.C. Liu, “Two -dimensional differential transform for partial differential equations, ” Applied mathematics and computation vol.121, pp. 261-270, 2001.
    [4]C.K. Chen, S.H. Ho, “Application of differential transformation to eigenvalue problem, ” Applied mathematics and computation, Vol.79, pp. 173-188, 1996.
    [5]C.K. Chen, S.H. Ho, “Free vibration analysis of non-uniform timoshenko beams using differential transform, ” Applied mathematical modeling,Vol.22, No.4-5, pp. 219-234, 1998a.
    [6]L.T. Yu, C.K. Chen, “The solution of the Blasius equation by the differential transformation method, ” Math. comput. modeling Vol. 28, No.1, pp. 101-111,1998.
    [7]L.T. Yu, C.K. Chen, “Application of Taylor transformation to optimize rectangular fins with variable thermal parameters, ”Applied mathematical modeling, vol.22, pp. 11-21, 1998.
    [8]J. S. Chiou, J. R. Tzeng, “ Application of the Taylor transform to nonlinear vibration problems, ”Trans. ASME, J. of Vibration and Acoustics, Vol. 118,pp. 83-87, 1996.
    [9]何星輝著, 微分轉換於自旋、預扭、承受軸向負載Timoshenko 樑振動問題之研究, 國立成功大學機械工程學系博士論文, 1998.
    [10]A. H. Nayfeh, “Perturbation methods, ” New York: John Wiley, 1973.
    [11]F. Lakrad, M.Belhaq, “Periodic solutions of strongly non-linear oscillators by the multiple scales method, ” Journal of sound and vibration, vol.258(4), pp. 677-700, 2002.
    [12]H. Qiao, Q. S. Li, G. Q. Li, “Torsional vibration of non-uniform shafts carrying an arbitrary number of rigid disks, ”Journal of vibration and acoustics, vol. 124, October 2002.
    [13]Martinus Th. Van Genuchten, “Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay, ” Journal of hydrology, vol. 49, pp. 213-233, 1981.
    [14]Md. Akram Hossain, D. R.Yonge, “Simulating advective-dispersive transport in groundwater: an accurate finite difference model, ”Applied mathematics and computation, vol.105, pp. 221-230, 1999.
    [15]Attilio Maccari, “Solitons trapping for the nonlinear Klein-Gordon equation with an external excitation, ”Chaos, solitons and fractals, vol.17,pp.145-154, 2003.
    [16]Salah M. El-Sayed, “The decomposition method for studying the Klein-Gordon equation, ”Chaos, solitons and fractals, vol. 18, pp.1025-1030, 2003.
    [17]Abraham I.B., “Engineering Analysis via Symbolic—a Breakthrough,” Applied Mechanics Reviews,Vol. 43,No.6, pp.119-127, 1990.
    [18]Wolfram S.,Mathematica:A System for Doing Mathematicas by Computer,Addison-Westly,Ubana-Champaigne,1998.
    [19]Wolfram S.,The Mathematica, Wolfram Media,Cambridge University Press, 1996.
    [20]Andrew D. Dimarogonas,Sam Haddad, “Vibration for Engineers , ” New Jersey: Prentice-Hall, 1992.
    [21]邱政田, 機械振動學概論, 五南圖書出版公司, 2005.

    下載圖示 校內:2007-07-21公開
    校外:2009-07-21公開
    QR CODE