簡易檢索 / 詳目顯示

研究生: 徐國軒
Hsu, Kuo-zuan
論文名稱: 以逆算法估算自然對流下之垂直矩形鰭片上的熱傳特性
Application of the Inverse Method to Estimate the Heat Transfer Characteristics on a Vertical Rectangular Fin in Natural Convection
指導教授: 陳寒濤
Chen, Han-taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 熱傳係數逆算法矩形鰭片熱傳量
外文關鍵詞: Inverse method, rectangular fin, heat-transfer coefficient, heat transfer rate
相關次數: 點閱:108下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之逆算法乃以有限差分法(Finite difference method)並配合最小平方法(Least squares scheme)及實驗溫度量測數據來估算自然對流(Free convection)環境下,不同間距、不同高度之矩形鰭片(Rectangular fin)垂直放置在垂直加熱平板上的平均熱傳係數(Average heat transfer coefficient)、總熱傳量(Total heat transfer)以及鰭片熱傳效率(Fin efficiency)。為了欲求得較正確的估算值,將垂直矩形鰭片分割成數個小區域在進行逆算分析。本文擬以小型風洞來量測於自然對流環境下矩形鰭片上溫度並與課本經驗公式及相關研究結果做比較。結果顯示,於自然對流之條件下,平均熱傳係數會隨著鰭片間距增加而提高,卻隨鰭片高度增加而減小。平均熱傳係數值會隨著鰭片間距增加而減小並趨近於單一鰭片。本文所估算之平均熱傳係數與相關文獻之經驗公式相比較,已驗證本文逆算法之準確性及經驗公式之合理性。

    This present study applied an inverse method involving the finite difference method in conjunction with the least-squares scheme and experimental temperature measurements to estimate the unknown heat transfer coefficient and heat transfer rate on a vertical rectangular fin with various fin spacing and fin height in natural convection. To estimate a more accurate estimation, thus the whole plate fin was divided into several analysis sub-fin regions before performing the inverse calculation. The small wind tunnel of our own device would be applied to measure the temperature of the test rectangular fin at several measurement locations in natural convection. Based on these experimental temperature measurements, the unknown heat transfer rate and heat-transfer coefficient on the vertical rectangular fin could be predicted. To validate the accuracy and reliability of the present inverse method, the predicted results of this present study would compare with those obtained from the correlation recommended by current textbooks or previous results. The results showed that the average heat transfer coefficient increases with increasing the fin spacing and decreases with increasing the fin height in free convection. However, this value approached its corresponding asymptotical value obtained from a single fin as . In order to evidence the accuracy of the presented inverse scheme and the reliability of some experimental formulas, a comparison of the average heat transfer coefficient between the present predicated results and those obtained from correlation recommended by current textbook is made.

    摘要........................................I ABSTRACT....................................II 誌謝........................................III 表目錄......................................VI 圖目錄......................................VII 符號說明....................................X 第一章 緒論.................................1 1-1 研究背景................................1 1-2 文獻回顧................................3 1-3 研究目的................................4 1-4 研究重點與本文架構......................5 第二章 二維之理論分析與數值模擬.............7 2-1 簡介....................................7 2-2 建立數學模式............................8 2-2-1 分析數值方法........................10 2-2-2 逆算法..............................12 2-3 結果與討論..............................16 2-3-1 溫度量測誤差對估算結果的影響........17 2-3-2 起始猜測值對估算結果的影響..........18 2-3-3 溫度量測位置與數目對估算結果的影響..18 2-4 結論....................................19 第三章 自然對流下之實驗操作與數據分析.......30 3-1 實驗簡介................................30 3-2 實驗設備................................30 3-3 實驗步驟................................33 3-4 實驗組別................................36 3-5 實驗結果與數據分析......................36 3-6 不同幾何區域分割方式分析................42 3-7 結論....................................42 第四章 綜合結論與未來展望...................78 4-1 數值模擬結果............................78 4-2 實驗結果................................78 4-3 綜合討論................................79 4-4 未來發展與建議..........................79 參考文獻....................................81 自述........................................85

    [1] D. R. Haper, W. B. Brown, “Mathematical equations for heat conduction in the fins of air cooled engines,” N. A. C. A. Rept, pp. 158, 1922.
    [2] W. Elenbaas, “Heat Dissipation of Parallel Plates by Free Convection,” Physica, Vol.IX, No.1, pp. 2-28, 1942.
    [3] T. E. Schmidt, “Heat transfer calculations for extended surfaces,” Refri. Eng., pp. 351-3570, 1949.
    [4] E. M. Sparrow, P. A. Bahrani, “Experiments on Natural Convection from Vertical Parallel Plates with Either Open or Closed Edges,” ASME J. Heat Transfer, Vol. 102, pp. 221-227, 1980.
    [5] J. V. Beck, “Calculation of surface heat flux from an integral temperature history,” ASME J. Heat Transfer, Vol. 62, pp. 46-51, 1962.
    [6] E. M. Sparrow, A. Haji-Sheikh, T.S. Lundgern, “The inverse problem in transient heat conduction,” J. Appl. Mech., Vol. 86, pp. 369-375, 1964.
    [7] J. V. Beck, “Surface heat flux determination using an integral method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
    [8] J. V. Beck, B. Litkouhi, C. R. Stclair, “Efficient numerical- solution of nonlinear inverse heat-conduction problem,” Mech. Eng., Vol. 102, pp. 96-96, 1980.
    [9] N. M. Alnajem, M. N. Özisik, “A direct analytical approach for solving linear inverse heat conduction problems,” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985.
    [10] S. Ostrach, “Laminar natural-convection flow and heat transfer of fluids with and without heat sources in channels with constant wall temperatures,” NACA Tech. Note 2863, 1952.
    [11] J. R. Bodoia, J. F. Osterle, “The development of free convection between heated vertical plates,” ASME J. Heat Transfer, Vol. 84, pp. 40-44, 1962.
    [12] H. N. McManus, K. E. Starner, “An experimental investigation of free-convection heat transfer from rectangular-fin arrays,” ASME J. Heat Transfer, pp. 273-277, 1963.
    [13] H. N. McManus, F. Harahap, “Natural convection heat transfer from horizontal rectangular fin arrays,” ASME J. Heat Transfer, pp. 34-37, 1967.
    [14] C. D. Jones, L. F. Smith, “Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer,” ASME J. Heat Transfer, pp. 6-10, 1970.
    [15] S. Sunil, J. R. N. Reddy, C. B. Sobhan, “Natural convection heat transfer from a thin rectangular fin with a line source at the base – a finite difference solution,” Heat Mass Transfer, Vol. 31, pp. 127-135, 1996.
    [16] S. Naik, S. D. Probert, I. G. Bryden, “Heat transfer characteristics of shrouded longitudinal ribs in turbulent forced convection,” Int. J. Heat Fluid Flow, Vol. 20, pp. 374-384, 1999.
    [17] E. Velayati, M. Yaghoubi, “Numerical study of convection heat transfer from an array of parallel bluff plates,” Int. J. Heat Fluid Flow, Vol. 26, pp. 80-91, 2005.
    [18] J. Deans, J. Neale, “The use of effectiveness concepts to calculate the thermal resistance of parallel plate heat sinks, ” Heat Transfer Eng., Vol. 27, pp. 56-67, 2006.
    [19] S. Lee, “Optimum design and selection of heat sinks,” Proceedings of 11th IEEE Semi-Term Symposium, pp. 48-54, 1995.
    [20] 張文奎,散熱鰭片擴散熱阻之分析, 國立清華大學工程與系統科學研究所,碩士碩文,2002。
    [21] 劉建佳,Pentium 4 散熱模組底板具凸起物之散熱性能研究,國立台灣科技大學機械工程研究所,碩士論文,2002。
    [22] H. T. Chen, J. P. Song, Y. T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat Mass Transfer, Vol. 48, pp. 2697-2707, 2005.
    [23] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer coefficient form the vertical fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer, Vol. 49, pp. 3034-3044, 2006.
    [24] F. Kreith, M. S. Bohn, “Principles of Heat Transfer,” 5th ed., West Publishing Company, Chap 5, pp. 349-350, 1993.
    [25] 王宏志,利用逆算法並配合溫度量測值預測結露時之平板鰭管式熱交換器的熱傳性質,國立成功大學機械工程所,碩士論文,2006。
    [26] Y. T. Lin, K. C. Hsu, Y. J. Chang, C.C. Wang, “Performance of rectangular fin in wet conditions: visualization and wet fin efficiency,” ASME J. Heat Transfer, Vol. 123, pp. 827-836, 2001.
    [27] 劉立熙,根據實驗溫度量測值估算矩形鰭片上之熱傳特性,國立成功大學機械工程所,碩士論文,2007。
    [28] 劉永智,利用逆算法和實驗溫度量測值估算CPU上之散熱鰭片的熱傳係數,國立成功大學機械工程所,碩士碩文,2006。
    [29] V. S. Arpaci, “Introduction to Heat Transfer,” pp. 580, 1999.
    [30] A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62, 1993.
    [31] F. E. M. Saboya, E. M. Sparrow, “Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations, ” ASME J. of Heat Transfer, Vol. 96, pp.265-272, 1974.
    [32] G. D. Raithby, K. G. T. Hollands, “Natural Convection,” Handbook of Heat Transfer Fundamentals, 2nd ed., W.M. Rohsenow, J.P. Hartnett and E.N. Ganic, eds, McGraw-Hill, New York, 1985.
    [33] D. W. Van De Pol, J. K. Tierney, “Free convection Nusselt number for vertical U-shaped channels,” J. Heat. Trans-T. ASME, Vol. 95, pp. 542-543, 1973.
    [34] T. Aibara, “Natural convective heat transfer in vertical parallel fins of rectangular heat profile,” Jap. Soc. Mech. Eng., Vol. 34, pp.915-926, 1968.
    [35] K. Raznjevic, “Handbook of Thermodynamic Tables and Charts,” McGraw-Hill, New York, 1976.

    下載圖示 校內:2010-08-29公開
    校外:2011-08-29公開
    QR CODE