簡易檢索 / 詳目顯示

研究生: 吳雅雯
Wu, Ya-Wen
論文名稱: 水熱合成方沸石之離子吸附研究
The ion adsorption of hydrothermally synthesized analcime
指導教授: 雷大同
Ray, Dah-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 吸附方沸石水熱合成
外文關鍵詞: hydrothermal synthesis, adsorption, analcime
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台東縣海端鄉利稻村向陽地區蘊藏豐富的絹雲母礦,可開採量達一千五百萬噸,是台灣地區最具經濟價值的工業礦物原料之ㄧ。向陽絹雲母礦經水洗後粒徑細於400號篩,礦物組成以絹雲母及葉蠟石為主,含少量的石英及高嶺石。本研究利用絹雲母水洗礦原樣及球磨4 hr、球磨48 hr樣為原料,添加Na2SiO3為礦化劑(濃度3 M),反應溫度240 ℃、持溫12 hr之條件下進行水熱反應,探討水熱合成方沸石(analcime)之吸附能力與溶液濃度、溶液pH值、水熱反應產物之粒徑之關係。
    吸附實驗係將方沸石置入含Pb2+、Cu2+及Ca2+離子之溶液中,進行吸附反應,利用原子吸收光譜儀分析吸附前後水溶液中Pb2+、Cu2+及Ca2+之含量,即可獲得方沸石對Pb2+、Cu2+及Ca2+之吸附量即去除率。根據試驗結果結論如下:
    1. 以絹雲母原樣、球磨4 hr及球磨48 hr樣進行水熱反應,所得方沸石之粒徑與原料粒徑有正相關,即原料粒徑大者,所得方沸石粒徑亦較大。
    2. 合成方沸石對於Pb2+、Cu2+、Ca2+皆具有吸附能力,且對此三種離子之吸附量無甚大差異,在溶液初始濃度為0.0001 M,固/液比1:100的條件下,合成方沸石對三者之去除率皆達80%以上。
    3. 在固定的固/液比下進行吸附實驗,隨著溶液離子濃度的增加,方沸石對於金屬離子(Pb2+、Cu2+、Ca2+)之吸附量亦增加,但去除率隨濃度之增加而減少,這係由於方沸石重量固定時,可提供吸附離子之位址數為定值,溶液濃度高時,溶液中金屬離子數量遠大於方沸石中可吸附離子之位址數量,故去除率隨著溶液濃度之增加而降低。
    4. 在相同溶液的濃度及固定溶液體積下,固體(方沸石)量越多,則吸附量及去除率越大,亦即固/液比越大,方沸石對金屬離子之吸附量及去除率越大,這是由於溶液濃度固定時,溶液中的金屬離子數目固定,隨著方沸石重量增加,方沸石所提供之交換位址亦增加,故對金屬離子的去除率及吸附量皆上升。
    5. 在酸性溶液中,H+會與金屬離子競爭吸附在方沸石結構中之陽離子位址,因此不利於方沸石進行吸附,故在產成氫氧化物沉澱之pH值前,適量地提升溶液之pH值可以增加方沸石對離子之吸附量以及去除率。
    6. 用過之方沸石以濃度0.01M之NaCl進行再生後,再生一次之方沸石在吸附量與去除率上與原方沸石近乎相同,再生三次及四次之方沸石對水中Pb離子的去除率仍有60%~70%,是可重複使用之吸附材。
    7. 球磨後樣品所合成之方沸石,其離子吸附量並未優於原樣合成之方沸石,對於Pb2+及Ca2+之吸附,原樣合成之方沸石吸附能力均優於球磨樣品合成之方沸石,顯示方沸石粒徑對吸附性能無顯著影響。推測可能由於方沸石去除水中之Pb2+、Cu2+及Ca2+係以離子交換的方式,吸附量及去除率僅與方沸石中可供交換之陽離子數目相關,與粒徑無關。

    A tremendous amount of sericite deposit is located in the northwest of Li-dao to Hsiang-yang, Hai-duan Borough, Taitung County. The sericite deposit is one of the most valuable industrial minerals in Taiwan. The particle size of wet-classified sericite powder is smaller than 400 mesh. The major mineral compositions are sericite and pyrophyllite, with a small amount of quartz and kaolinite. In this study, the sericite powders, including the original, the samples ball-milled for 4 and 48 hr, were used to synthesize analcime via hydrothermal reactions. The mineralizer was Na2SiO3. The reactions were carried out at 240°C and held for 12 hr. The adsorption experiments of Pb2+, Cu2+ and Ca2+ were performed to investigate the influences of ion concentration, solution pH, particle size of analcime. The following conclusions can be drawn.
    1. The particle sizes of the three analcime products are proportional to their starting materials, i.e. smaller starting materials synthesize smaller analcime.
    2. The synthesized analcime has indiscriminate adsorption capability to Pb2+, Cu2+ and Ca2+, e.g. in the tests of initial concentration of 0.0001 M, the S/L ratio of 1:100, the removal percentage of the three ions are all above 80%.
    3. For fixed S/L ratio, with the increasing of ion concentrations, the adsorption amount of Pb2+, Cu2+ and Ca2+ also increases. However, the removal percentage decreases. This is reasonable, because the total adsorption sites are fixed for a fixed amount of analcime. When the ion concentration increases, the total number of ions exceeds the total number of sites, eventually reduces the removal percentage.
    4. For fixed ion concentration and solution volume, with the increasing the amount of analcime (S/L ratio), both the adsorption amount and removal percentage increase. This is due to that the total number of ions in solution is constant, therefore increasing the solid is equivalent to increasing the adsorption sites.
    5. In the acid solution, H+ will compete against metal ions in the adsorption on analcime, thus is disadvantageous to the adsorption. It is found that at the pH, when the first hydroxy complex ion (MOH+) is formed, both adsorption amount and removal percentage can be increased.
    6.Used analcime can be regenerated with 0.01M NaCl solution. The adsorption capability of first recycled analcime is almost unchanged. For Pb2+ ion, the removal percentage is still as high as 60~70% after recycled for 4 times.
    7.The adsorption capability of analcime samples synthesized from ball-milled sericite, do not present specifically better performance than that from the not-ground sericite. For Pb2+ and Ca2+ ions, the adsorption of analcime from not-ground sericite even is better than the other two. This shows that the particle size of analcime has no influence on the adsorption capability. It is thus reasonably to assume that the removal of Pb2+, Cu2+ and Ca2+ by analcime is via the mechanism of ion exchange. The adsorption amount and removal percentage are related to the total number of adsorption sites, not the particle size (i.e. surface area).

    摘要 I Abstract III 誌謝 V 表目錄 1 圖目錄 3 第一章 緒論 5 1.1 研究背景 5 1.2 研究目的 7 第二章 理論基礎與前人研究 8 2.1 層狀矽酸鹽礦物之結晶構造 8 2.2 沸石 15 2.2.1 沸石的組成與結構 15 2.2.2 沸石的特性與應用 22 2.3 方沸石 26 2.4 沸石群的離子交換 32 2.4.1 等溫離子交換 32 2.4.2 離子交換處理硬水 34 2.5 等溫吸附理論 35 2.5.1 Freundlich 等溫吸附理論35 2.5.2 Langmuir 等溫吸附理論 36 2.5.3 BET (Brunauer-Emmett-Teller) 等溫吸附理論 37 第三章 實驗材料與步驟 38 3.1 實驗材料 38 3.2 實驗步驟與設備 41 3.2.1 實驗步驟 41 3.2.2 實驗設備 43 3.3 性質分析 45 第四章 結果與討論 46 4.1 水熱反應產物之性質分析 46 4.1.1 X光繞射(XRD)晶相鑑定 46 4.1.2 掃描式電子顯微鏡(SEM)影像分析 47 4.1.3 粒徑分析 51 4.1.4 比表面積分析 51 4.2 方沸石之離子交換 52 4.2.1 Pb2+、Cu2+、Ca2+離子在不同pH值下之類型及濃度 52 4.2.2 方沸石之離子吸附曲線 60 4.2.3 方沸石之吸附模式 62 4.2.4 方沸石之離子吸附及離子去除率 68 4.2.5 固/液比對方沸石之離子交換性能影響 73 4.2.6 溶液pH值對方沸石之離子交換性能影響 75 4.2.7 合成方沸石之再生 77 4.2.8 合成方沸石粒徑對離子吸附之影響 79 第五章 結論 84 參考文獻 86 附錄A 安德利森瓶(Andreasen pipte)粒徑分布量測步驟 90 附錄B 實驗及理論計算數據表 93 附錄C 掃描式電子顯微鏡照片 101

    1. 陳其瑞,“台東縣向陽雲母礦成因之初步研究,”經濟部中央地質調查所特刊3號,161~169頁,民國73年。

    2. 台灣地區雲母之利用與流向調查,經濟部礦業司,台灣礦業,第四十七卷第四期,451~467頁,民國84年12月。

    3. 魏稽生及譚立平,台灣非金屬經濟礦物,經濟部中央地質調查所,141~150頁,民國86年。

    4. Klein, C. and C.S. Hurlbut, Jr. , “Manual of Minerals, ”Revised 21th ed., John Wiley&Sons, Inc. ,New York, 1999.

    5. Madhukar, B.B.L. and S.N.P. Srivastava, Mica and mica industry, A.A. Balkema, Rotterdam, 1995.

    6. 王明光,土壤環境礦物學,義軒圖書出版社,台灣,2000年1月。

    7. 任磊夫,黏土礦物與黏土岩,地質出版社,北京市,1992年2月。

    8. 張振輝,向陽絹雲母礦中絹雲母及葉蠟石水熱改質研究,國立成功大學資源工程學系碩士論文,民國94年6月。

    9. 劉玉梅,向陽絹雲母礦中葉蠟石水熱合成方沸石之研究,國立成功大學資源工程學系碩士論文,民國95年6月。

    10. 何宗祐,向陽絹雲母水熱合成方沸石、氫氧鈣霞石及氫氧方鈉石之研究,國立成功大學資源工程學系碩士論文,民國97年6月。

    11. 程石,湯中道,李少莉,“改性方沸石用於飲用水除氟的實驗研究,”非金屬礦,29卷,6期,2006。

    12. 胡艷海,周曉磊,李曉云,“天然方沸石製備離子篩試驗研究,”非金屬礦,30卷,6期,2007。

    13. Dyer A. , T. Sudaporn, R. Kunwadee, “Exchange diffusion of Cu2+, Ni2+, Pb2+, Zn2+ into analcime synthesized from perlite, ” Microporous and Mesoporous Materials, Vol.75, No.1, pp.273~279, 2004.

    14. Sudaporn, T., R. Kunwadee, A. Dyer, “ Ions exchange of Cu2+, Ni2+, Pb2+,Zn2+ in analcime (ANA) synthesized from Thai perlite, ” Microporous and Mesoporous Materials, Vol.79, No.1, pp. 171~175, 2005.

    15. Grim, R. E., Clay Mineralogy, McGraw-Hill, New York, 1953.

    16. 張仲民,普通土壤學,國立編譯館出版,台北市,民國77年。

    17. 張郇生,從雲母來認識黏土礦物—兼論黏土,地質,民國82年。

    18. 趙杏媛及張有瑜,黏土礦物與黏土礦物分析,洋出版社,北京,1990年5月。

    19. 陳培源,劉德慶,黃怡禎,台灣之礦物,經濟部中央地質調查所,民國92年。

    20. Barrer, R. M., Hydrothermal Chemistry of Zeolite, Academic ,1982.

    21. http://www.iza-online.org/

    22. 吳榮宗,工業觸媒概論,國興出版社,1989。

    23. Meier W. J. and D. Olson, Atlas of Zeolite Structure Types, Butterworths,London, 1992.

    24. Dyer A., “ Modern theories of ion exchange and ion exchange selectivity with particular reference to zeolite in Inorganic Ion Exchange in Chemical Analysis, ” CRC Press, pp. 33~55,1991.

    25. 徐如人,龐文琴,屠昆崗,沸石分子篩的結構與合成,吉林大學出版社,1987。

    26. Virta, R., “ Zeolite, ” U.S. Geological Survey-Minerals Information, 1997.

    27. Tomasevi-Anovi, M.A. Dokovi, G. Rottinghaus and A. Arov-Stan,“Adsorption of ochratoxin A by octadecyldimethylbenzyl-heulandite tuff,” Microporous and Mesoporous Materials, Vol.61, No.1, pp.173~180, 2003.

    28. 張壽庭,趙鵬大,陳建平,“天然沸石性能與陽離子阻分之間的關係”,地球化學,30卷,5期,477頁。

    29. 李華興,張新明,李長洪,張方榮,盧維盛,劉遠金,“廣東省天然沸石的特性及其對土壤肥力的影響研究,”土壤環境,5卷,4期,2002。

    30. 唐扈祥,楊留方,吳興惠,“天然沸石及沸石類分子篩,”材料導報,18卷專輯Ⅱ,2004年4月。

    31. 劉鑫,劉福田,張寧,王冬至,“沸石負載納米TiO2光催化劑水處理研究進展,”矽酸鹽通報,6期,2006。

    32. 陳養民,王香愛,李雅麗,“無磷助洗劑δ-層狀二矽酸鈉,”應用化工,4期,2006。

    33. 李虎傑,易發成,“沸石對放射性核素Cs+、Sr2+的吸附阻滯作用,”礦物岩石,1期,2006。

    34. 李全偉,張東,李帆,“沸石用於放射性廢樹脂水泥固化的試驗研究,”非金屬礦,28卷,5期,2005。

    35. Barrer R.M. and R.P. Townsend., “Transition Metal Ion Exchange in Zeolites, ” Journal of the Chemical Society. Faraday Transactions,Vol.72,No.1, pp.661~673, 1975.

    36. Mondale K.D., R.M. Carland, F.F. Aplan, “The Comparative Ion Exchange Capacities of Natural Sedimentary and Synthetic zeolite,”Minerals Engineering, Vol 8, No 4/5, pp.535~548, 1995.

    37. Colella C., “Ion exchange equilibria in zeolite minerals, ” Mineralium deposita, Vol. 36, pp. 554~562, 1996.

    38. Harland C.E., Ion exchange Theory and Practice, Royal Society of Chemistry Paperbacks, 2nd ed, USA, 1994.

    39. 韓銀利,周惠康,余秋生,于艷青,“處理高氟水新礦物材料的試驗研究,”寧夏工程技術,6卷,4期,2007。

    40. 陳方明,陸琦,“方沸石水質劑化劑的製備及其除氟研究,”環境工程學報,1卷,9期,2007。

    41. 谷白云,孟長功,辛鋼,“鈉型方沸石與Cd2+的離子交換平衡研究,”石油化工,36卷,4期,2007。

    42. Benjamin M. M. , Water Chemistry, McGraw Hill, USA, 2002.

    43. 李虎杰,田煦,易發成,“活化沸石對Pb2+的吸附性能研究,”非金屬礦,24卷,2期,2001。

    44. Hunter R.J., Introduction to Modern Colloid Science, Oxford University Press, 1993.

    45. Shaw D.J., Introduction to Colloid and Surface Chemistry, 4th ed., Butterworths, 1992.

    46. Adamson A.W., Physical Chemistry of Surfaces, 5th ed. John Wiley & Sons, 1990.

    下載圖示 校內:2011-07-15公開
    校外:2011-07-15公開
    QR CODE