簡易檢索 / 詳目顯示

研究生: 張書燁
Chang, Shu-Yeh
論文名稱: 膨脹性超常材料之彈性波操控及其應用
Elastic Wave Manipulation of Auxetic Metamaterials and its Applications
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 膨脹材料聲子能隙負折射局部共振型聲子晶體超常介面。
外文關鍵詞: Phononic crystal, auxetic structure, star-shaped honeycomb structure, local resonant
相關次數: 點閱:128下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於任何形式的波而言,是無法僅藉由單一均質性的材料所控制,必須具有如梯
    度分佈、材料間介面以及曲線排列等某種程度的非均質性存在,才能被加以控制。在
    早期聲子晶體的研究與探討主要是集中於能隙的應用與計算,如濾波器、波導或共振
    腔的設計。而近年來研究發現在其傳導區擁有異常之頻散現象,發現聲子晶體具有負
    折射特性,使得該方面之研究更成為最近學術界的熱門話題。
    而具有負蒲松比特性之彈性材料,又稱膨脹材料,而膨脹材料多為孔隙材料所構
    成,其組成皆為彈性體的周期性排列,分析對象為彈性波,學者將其視為聲子晶體的
    一種,透過有限元素分析與布洛赫定理分析此類型週期結構的波傳行為。本文以膨脹
    材料結合聲子晶體為主軸,使用有限元素軟體分析負蒲松比對於能帶結構以及波傳行
    為的影響,選用背景基材為膨脹材料,散射體為鋼材所構成的二維聲子晶體,並在兩
    種幾何形式的散射體下,計算聲子晶體之能帶結構圖與等頻圖來分析。而膨脹材料對
    於能隙頻率影響非常關鍵,可以藉由調變蒲松比來改變其能隙頻率。最後,針對由矩
    形柱週期排列而成的聲子晶體上,所對應到的自我準直現象。並且設計特殊佈局及超
    常介面操控彈性波。最後討論二維以及三維局部共振型聲子晶體之低頻率能隙的特性,
    藉由局部共振型聲子晶體本身特性,用較小的尺寸獲得更低的能隙,並且使用負蒲松
    比材料替換包覆軟材可以大幅降低其鋼性,達到更低的能隙。

    In this thesis, the wave propagation in phononic crystal composed of auxetic star-shaped
    honeycomb matrix with negative Poisson’s ratio is presented. Two types of inclusions with
    circular and rectangular cross sections are considered. The band structures of the phononic
    crystals are obtained by the finite element method. The band structure of the phononic crystal
    is affected significant by the auxeticity of the star-shaped honeycomb. Some other interesting
    findings are also presented, such as the negative refraction and the self-collimation. The
    present study demonstrates the potential applications of the star-shaped honeycomb in
    phononic crystals, such as vibration isolation and the elastic waveguide. The results reveal
    that the phononic crystals composed of auxetic materials can have a great potential for the
    design of novel acoustic devices. Furthermore, the low frequency band gap of local resonant
    phononic crystals with auxetic coating material are also investigated. Low frequency waves,
    in the range 3–15 Hz for earthquakes and up to hundreds of Hz for vibrations generated by
    machine tool, cause a large amount of damage or inconvenience. The first band gap of local
    resonant phononic crystals with auxetic coating material can applied for this region of
    frequency.

    摘要 ................ I Elastic Wave Manipulation of Auxetic Metamaterials and its Applications .... II 致謝 ................ X 目錄 ............... XI 表目錄 .............. XIII 圖目錄 .............. XIV 符號說明 ............... XVII 第一章 緒論 ............... 1 1-1 前言 .............. 1 1-2 文獻回顧 .............. 2 1-2-1 基本的聲子晶體 .......... 2 1-2-2 基本的聲子晶體 ........... 3 1-2-3 準直現象與梯度聲子晶體 ......... 4 1-2-4 局部共振聲子晶體 ........... 4 1-2-5 孔隙材料 ............. 5 1-2-6 負蒲松比材料 ........... 6 1-3 本文架構 .............. 7 第二章 數值方法 ............. 10 2-1 前言 ............... 10 2-2 固態物理學基本定義 ........... 10 2-2-1 倒晶格空間 ........... 10 2-2-2 布里淵區(Brillouin Zones) ........ 13 2-2-3 布洛赫定理(Bloch theorem) ......... 15 2-3 有限元素法 ............ 16 2-3-1 平面應力及平面應變問題 ......... 16 2-3-2 結構模組之有限元素法 ......... 18 2-4 膨脹材料 .............. 22 XII 2-4-1 膨脹材料之機械性質 ......... 22 2-4-2 膨脹材料波傳行為 ........... 25 第三章 聲子晶體於膨脹背景材料 ........... 29 3-1 前言 .............. 29 3-2 等效膨脹材料 ............ 29 3-2-1 支架結構分析 .......... 29 3-3 膨脹材料應用聲子晶體背景材料 ......... 30 3-3-1 空氣柱聲子晶體 .......... 30 3-3-2 鋼圓柱正方晶格聲子晶體 ........ 31 3-3-3 負折射效應 ............ 32 3-3-4 填入實際膨脹材料 .......... 33 3-4 膨脹材料嵌入矩形柱之聲子晶體 ......... 35 3-4-1 能帶結構與等頻圖分析 ......... 35 3-4-2 自我準直現象之模擬 ......... 37 3-4-3 自我準直現象之彎曲波導 ......... 37 3-5 超常介面 ............. 38 3-5-1 超常材料簡介 ........... 38 3-5-2 超常介面 ........... 39 3-5-3 膨脹材料嵌入聲子晶體構成超常介面之行為 ..... 40 第四章 膨脹材料應用於局部共振聲子晶體分析 ....... 62 4-1 前言 ............... 62 4-2 局部共振聲子晶體 ........... 62 4-2-1 局部共振帶隙產生機制 ......... 62 4-2-2 替換軟材使用膨脹材料分析其能帶結構 ....... 64 4-3 三維局部共振聲子晶體 ........... 65 第五章 綜合結論與未來展望 ........... 74 5-1 綜合結論 .............. 74 5-2 未來展望 .............. 75 參考文獻 ............... 76 XIII 表目錄 表3- 1 各填入基材之材料參數 ......... 61

    [1] Yablonovitch, Eli, and T. J. Gmitter. "Photonic band structure: The face-centered-cubic
    case." Physical Review Letters 63.18 (1989): 1950.
    [2] Yablonovitch, Eli. "Inhibited spontaneous emission in solid-state physics and
    electronics." Physical review letters 58.20 (1987): 2059.
    [3] John, Sajeev. "Strong localization of photons in certain disordered dielectric
    superlattices." Physical review letters 58.23 (1987): 2486.
    [4] M. Sigalas and E. Economou,"Elastic and acoustic wave band structure", Journal of
    sound and vibration, Vol. 158, No. 2, pp. 377-382. (1992).
    [5] Kushwaha, Manvir S., et al. "Acoustic band structure of periodic elastic composites."
    Physical review letters 71.13 (1993): 2022.
    [6] Brillouin, Leon. Wave propagation in periodic structures: electric filters and crystal
    lattices. Courier Corporation, 2003.
    [7] L. Cremer and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural
    periodic systems)” Archiv der Elektrischen Ubertragung, Vol. 7, pp.261 (1953)
    [8] Mead, D. M. "Wave propagation in continuous periodic structures: research
    contributions from Southampton, 1964–1995." Journal of sound and vibration 190.3
    (1996): 495-524.
    [9] Mester, S. S., and Haym Benaroya. "Periodic and near-periodic structures." Shock and
    Vibration 2.1 (1995): 69-95.
    [10] Bousfia, A., et al. "Omnidirectional phononic reflection and selective transmission in
    one-dimensional acoustic layered structures." Surface science 482 (2001): 1175-1180.
    [11] Manzanares-Martínez, Betsabe, et al. "Experimental evidence of omnidirectional
    elastic bandgap in finite one-dimensional phononic systems." Applied physics letters
    85.1 (2004): 154-156.
    [12] Kushwaha, M. S., and P. Halevi. "Band‐gap engineering in periodic elastic
    composites." Applied Physics Letters 64.9 (1994): 1085-1087.
    [13] Kushwaha, Manvir S., et al. "Theory of acoustic band structure of periodic elastic
    composites." Physical Review B 49.4 (1994): 2313.
    77
    [14] Kushwaha, Manvir S. "Stop-bands for periodic metallic rods: Sculptures that can filter
    the noise." Applied Physics Letters 70.24 (1997): 3218-3220.
    [15] R. Martinezsala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares and F.
    Meseguer,"SOUND-ATTENUATION BY SCULPTURE", Nature, Vol. 378, No. 6554,
    pp. 241-241. (1995).
    [16] Thomas, Edwin L., Taras Gorishnyy, and Martin Maldovan. "Phononics: Colloidal
    crystals go hypersonic." Nature materials 5.10 (2006): 773-774.
    [17] Wen, Jihong, et al. "Theoretical and experimental investigation of flexural wave
    propagation in straight beams with periodic structures: Application to a vibration
    isolation structure." Journal of Applied Physics 97.11 (2005): 114907.
    [18] Sigalas, M. M. "Elastic wave band gaps and defect states in two-dimensional
    composites." The Journal of the Acoustical Society of America 101.3 (1997): 1256-
    1261.
    [19] Wu, Fugen, et al. "Point defect states in two-dimensional phononic crystals." Physics
    Letters A 292.3 (2001): 198-202.
    [20] Miyashita, Toyokatsu. "Experimentally study of a sharp bending wave-guide
    constructed in a sonic-crystal slab of an array of short aluminum rods in air."
    Ultrasonics Symposium, 2004 IEEE. Vol. 2. IEEE, 2004.
    [21] Zhang, Xin, et al. "Defect states in 2D acoustic band-gap materials with bend-shaped
    linear defects." Solid State Communications 130.1 (2004): 67-71.
    [22] Veselago, Viktor G. "The electrodynamics of substances with simultaneously negative
    values of and μ." Soviet physics uspekhi 10.4 (1968): 509.
    [23] Pendry, John Brian. "Negative refraction makes a perfect lens." Physical review letters
    85.18 (2000): 3966.
    [24] Liu, Wei, and Xianyue Su. "Collimation and enhancement of elastic transverse waves
    in two-dimensional solid phononic crystals." Physics Letters A 374.29 (2010): 2968-
    2971.
    [25] Cicek, Ahmet, Olgun Adem Kaya, and Bulent Ulug. "Impacts of uniaxial elongation
    on the bandstructures of two-dimensional sonic crystals and associated applications."
    Applied Acoustics 73.1 (2012): 28-36.
    [26] Cicek, Ahmet, Olgun Adem Kaya, and Bulent Ulug. "Wide-band all-angle acoustic
    78
    self-collimation by rectangular sonic crystals with elliptical bases." Journal of Physics
    D: Applied Physics 44.20 (2011): 205104.
    [27] Soliveres, Ester, et al. "Self collimation of ultrasound in a three-dimensional sonic
    crystal." Applied Physics Letters 94.16 (2009): 164101.
    [28] Cebrecos, A., et al. "Formation of collimated sound beams by three-dimensional sonic
    crystals." Journal of Applied Physics 111.10 (2012): 104910.
    [29] Morvan, B., et al. "Ultra-directional source of longitudinal acoustic waves based on a
    two-dimensional solid/solid phononic crystal." Journal of Applied Physics 116.21
    (2014): 214901.
    [30] Lin, Sz-Chin Steven, et al. "Gradient-index phononic crystals." Physical Review B
    79.9 (2009): 094302.
    [31] Liu, Zhengyou, et al. "Locally resonant sonic materials." science 289.5485 (2000):
    1734-1736.
    [32] James, Richard, et al. "Sonic bands, bandgaps, and defect states in layered structures—
    theory and experiment." The Journal of the Acoustical Society of America 97.4 (1995):
    2041-2047.
    [33] Liu, Zhengyou, Che Ting Chan, and Ping Sheng. "Three-component elastic wave
    band-gap material." Physical Review B 65.16 (2002): 165116.
    [34] Gang, Wang, et al. "Accurate evaluation of lowest band gaps in ternary locally resonant
    phononic crystals." Chinese Physics 15.8 (2006): 1843.
    [35] Zhang, Xin, et al. "Large two-dimensional band gaps in three-component phononic
    crystals." Physics Letters A 317.1 (2003): 144-149.
    [36] Zhang, Shu, and Jianchun Cheng. "Existence of broad acoustic bandgaps in threecomponent
    composite." Physical Review B 68.24 (2003): 245101.
    [37] Larabi, H., et al. "Multicoaxial cylindrical inclusions in locally resonant phononic
    crystals." Physical Review E 75.6 (2007): 066601.
    [38] Wu, Ying, Yun Lai, and Zhao-Qing Zhang. "Elastic metamaterials with simultaneously
    negative effective shear modulus and mass density." Physical Review Letters 107.10
    (2011): 105506.
    [39] Fok, L., and X. Zhang. "Negative acoustic index metamaterial." Physical Review B
    83.21 (2011): 214304.
    79
    [40] N. J. Hoff, “Structural Problems of Future Aircraft” Third Anglo-American
    Aeronautical Conference. The Royal Aeronautical Society, London, p.77 (1951)
    [41] Ren, Xin, et al. "Experiments and parametric studies on 3D metallic auxetic
    metamaterials with tuneable mechanical properties." Smart Materials and Structures
    24.9 (2015): 095016.
    [42] Ren, Xin, et al. "A simple auxetic tubular structure with tuneable mechanical
    properties." Smart Materials and Structures 25.6 (2016): 065012.
    [43] Bertoldi, Katia, et al. "Negative Poisson's ratio behavior induced by an elastic
    instability." Advanced Materials 22.3 (2010): 361-366.
    [44] Shan, Sicong, et al. "Harnessing multiple folding mechanisms in soft periodic
    structures for tunable control of elastic waves." Advanced Functional Materials 24.31
    (2014): 4935-4942.
    [45] Phani, A. Srikantha, J. Woodhouse, and N. A. Fleck. "Wave propagation in twodimensional
    periodic lattices." The Journal of the Acoustical Society of America 119.4
    (2006): 1995-2005.
    [46] Karasudhi, Pisidhi. Foundations of solid mechanics. Vol. 3. Springer Science &
    Business Media, 2012.
    [47] Love, Augustus Edward Hough. A treatise on the mathematical theory of elasticity.
    Cambridge university press, 2013.
    [48] Simmons, Gene. Single crystal elastic constants and calculated aggregate properties.
    SOUTHERN METHODIST UNIV DALLAS TEX, 1965.
    [49] Milstein, Frederick, and K. Huang. "Existence of a negative Poisson ratio in fcc
    crystals." Physical Review B 19.4 (1979): 2030.
    [50] Baughman, Ray H., et al. "Negative Poisson's ratios as a common feature of cubic
    metals." Nature 392.6674 (1998): 362-365.
    [51] Gibson, Lorna J., et al. "The mechanics of two-dimensional cellular materials."
    Proceedings of the Royal Society of London A: Mathematical, Physical and
    Engineering Sciences. Vol. 382. No. 1782. The Royal Society, 1982.
    [52] Robert, F. "An isotropic three-dimensional structure with Poisson's ratio--1." Journal
    of Elasticity 15 (1985): 427-430.
    [53] Lakes, Roderic. "Foam structures with a negative Poisson's ratio." Science 235 (1987):
    80
    1038-1041.
    [54] Evans, Ken E. "Auxetic polymers: a new range of materials." Endeavour 15.4 (1991):
    170-174.
    [55] Prall, D., and R. S. Lakes. "Properties of a chiral honeycomb with a Poisson's ratio
    of—1." International Journal of Mechanical Sciences 39.3 (1997): 305-314.
    [56] Murray, Gabriel J., and Farhan Gandhi. "Auxetic honeycombs with lossy polymeric
    infills for high damping structural materials." Journal of Intelligent Material Systems
    and Structures 24.9 (2013): 1090-1104.
    [57] Mousanezhad, Davood, et al. "Hierarchical honeycomb auxetic metamaterials."
    Scientific reports 5 (2015).
    [58] Saxena, Krishna Kumar, Raj Das, and Emilio P. Calius. "Three Decades of Auxetics
    Research− Materials with Negative Poisson's Ratio: A Review." Advanced
    Engineering Materials 18.11 (2016): 1847-1870.
    [59] Schenk, Mark, and Simon D. Guest. "Geometry of Miura-folded metamaterials."
    Proceedings of the National Academy of Sciences 110.9 (2013): 3276-3281.
    [60] Yasuda, H., and Jinkyu Yang. "Reentrant origami-based metamaterials with negative
    Poisson’s ratio and bistability." Physical review letters 114.18 (2015): 185502.
    [61] Lv, Cheng, et al. "Origami based mechanical metamaterials." Scientific reports 4
    (2014): 5979.
    [62] Scarpa, Fabrizio, et al. "Kirigami auxetic pyramidal core: mechanical properties and
    wave propagation analysis in damped lattice." Journal of Vibration and Acoustics
    135.4 (2013): 041001.
    [63] Virk, K., et al. "SILICOMB PEEK Kirigami cellular structures: mechanical response
    and energy dissipation through zero and negative stiffness." Smart Materials and
    Structures 22.8 (2013): 084014.
    [64] Zirbel, Shannon A., et al. "Accommodating thickness in origami-based deployable
    arrays." Journal of Mechanical Design 135.11 (2013): 111005.
    [65] Ruzzene, Massimo, Fabrizio Scarpa, and Francesco Soranna. "Wave beaming effects
    in two-dimensional cellular structures." Smart materials and structures 12.3 (2003):
    363.
    [66] Gonella, Stefano, and Massimo Ruzzene. "Analysis of in-plane wave propagation in
    81
    hexagonal and re-entrant lattices." Journal of Sound and Vibration 312.1 (2008): 125-
    139.
    [67] Ruzzene, Massimo, and Panos Tsopelas. "Control of wave propagation in sandwich
    plate rows with periodic honeycomb core." Journal of engineering mechanics 129.9
    (2003): 975-986.
    [68] Ruzzene, Massimo, and Fabrizio Scarpa. "Control of wave propagation in sandwich
    beams with auxetic core." Journal of intelligent material systems and structures 14.7
    (2003): 443-453.
    [69] Liebold‐Ribeiro, Yvonne, and Carolin Körner. "Phononic band gaps in periodic
    cellular materials." Advanced Engineering Materials 16.3 (2014): 328-334.
    [70] Zhang, Yan, et al. "Regulating elastic bandgaps in two‐dimensional lattice grid by
    periodical cut‐off operations." physica status solidi (b) 253.3 (2016): 566-572.
    [71] Meng, J., et al. "Band gap analysis of star-shaped honeycombs with varied Poisson’s
    ratio." Smart Materials and Structures 24.9 (2015): 095011.
    [72] Lim, Teik-Cheng. Auxetic materials and structures. Springer, 2014.
    [73] Berryman, James G. "Long-wavelength propagation in composite elastic media I.
    Spherical inclusions." J. Acoust. Soc. Am 68 (1980): 6.
    [74] Hudson, John Arthur. The excitation and propagation of elastic waves. CUP Archive,
    1980.
    [75] Achenbach, Jan. Wave propagation in elastic solids. Vol. 16. Elsevier, 2012.
    [76] Lim, Teik‐Cheng, Philip Cheang, and Fabrizio Scarpa. "Wave motion in auxetic
    solids." physica status solidi (b) 251.2 (2014): 388-396.
    [77] Chen, Y. J., et al. "Elasticity of anti-tetrachiral anisotropic lattices." International
    Journal of Solids and Structures 50.6 (2013): 996-1004.
    [78] Ma, Tian-Xue, et al. "Elastic band structures of two-dimensional solid phononic crystal
    with negative Poisson's ratios." Physica B: Condensed Matter 407.21 (2012): 4186-
    4192.
    [79] Liu, Geng-Ting, et al. "Elastic Dispersion Analysis of Two Dimensional Phononic
    Crystals Composed of Auxetic Materials." ASME 2015 International Mechanical
    Engineering Congress and Exposition. American Society of Mechanical Engineers,
    2015.
    82
    [80] 周偉迪(2016)。可調式膨脹星形蜂巢狀結構之波傳分析。國立成功大學機系研究
    所碩士論文,未出版,台灣台南。
    [81] Zhang, Xiangdong, and Zhengyou Liu. "Negative refraction of acoustic waves in twodimensional
    phononic crystals." Applied Physics Letters 85.2 (2004): 341-343.
    [82] Torres, M., and FR Montero de Espinosa. "Ultrasonic band gaps and negative
    refraction." Ultrasonics 42.1 (2004): 787-790.
    [83] Qiu, Chunyin, Xiangdong Zhang, and Zhengyou Liu. "Far-field imaging of acoustic
    waves by a two-dimensional sonic crystal." Physical Review B 71.5 (2005): 054302.
    [84] Li, Jing, Zhengyou Liu, and Chunyin Qiu. "Negative refraction imaging of acoustic
    waves by a two-dimensional three-component phononic crystal." Physical Review B
    73.5 (2006): 054302.
    [85] Veselago, Viktor G. "The electrodynamics of substances with simultaneously negative
    values of and μ." Soviet physics uspekhi 10.4 (1968): 509.
    [86] Tian, Ye, et al. "Broadband manipulation of acoustic wavefronts by pentamode
    metasurface." Applied Physics Letters 107.22 (2015): 221906.
    [87] Yu, Nanfang, et al. "Light propagation with phase discontinuities: generalized laws of
    reflection and refraction." science 334.6054 (2011): 333-337.
    [88] Gang, Wang, et al. "Accurate evaluation of lowest band gaps in ternary locally resonant
    phononic crystals." Chinese Physics 15.8 (2006): 1843.

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE