簡易檢索 / 詳目顯示

研究生: 李孟翰
Li, Meng-Han
論文名稱: 二維波方程之高階不連續有限元方法
A High-Order Runge-Kutta Discontinuous Galerkin Method for The Two-Dimensional Wave Equation
指導教授: 陳旻宏
Chen, Min-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 54
中文關鍵詞: 高階數值方法不連續有限元素法SSPRK方法波方程
外文關鍵詞: High-order method, Discontinuous Galerkin method, SSPRK method, Wave equation
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這份論文中,我們使用高階不連續有限元素法解決波方程的模型問題。我們用DG方法對空間作離散,且以 mth-order, m-stage SSP-RK 方法對時間項做迭代。網格部分,我們使用的是四邊型的元素,且多項式基底空間使用 Q^k-polynomials 。數值結果證實了如預期的收斂性,當基底函數設定為 p 階,其數值解的收斂速度為 p+1。

    In this work, we develop a high-order Runge-Kutta Discontinuous Galerkin (RKDG) method to solve the two-dimensional wave equations.
    We use DG methods to discretize the equations with high order elements in space, and then we use the mth-order, m-stage strong stability preserving Runge-Kutta (SSP-RK) scheme to solve the resulting semi-discrete equations. To discretize the equaiotns in spaces, we use the quadrilateral elements and the Q^k-polynomials as basis functions. The scheme achieves full high-order convergence in time and space while keeping the time-step proportional to the spatial mesh-size.
    Numerical results are presented that confirm the expected convergence properties. When all the local spaces contain the polynomials of degree p,the numerical experiments show that the numerical solution converges with order p+1.

    1-簡介 ................................................ 1 2-傳輸方程及波方程問題 ................................ 2 2.1一維傳輸方程式穩定性分析 .......................... 2 2.2二維傳輸方程式穩定性分析 .......................... 4 2.3二維波方程 ........................................ 6 3-計算格式推導及穩定性分析 ............................ 8 3.1二維傳輸方程式數值計算格式推導及穩定性分析 ........ 8 3.2二維波方程數值計算格式推導及穩定性分析 ........... 12 3.3 TimeIteration ................................... 15 3.4 Legendre多項式 .................................. 15 4-數值結果 ........................................... 18 4.1一維傳輸方程式數值結果 ........................... 19 4.2二維傳輸方程式數值結果 ........................... 28 4.3二維波方程數值結果 ............................... 34 5-結論 ............................................... 38 A-計算格式細部推導 ................................... 41 A.1二維傳輸方程數值計算格式細部推導 ................. 41 A.2二維波方程數值計算格式細部推導 ................... 46

    [1] B. Cockburn, ”Discontinuous Galerkin methods”, ZAMM. Z. Angew. Math. Mech. vol. 83, No. 11, pp. 731-754 (2003).
    [2] B. Cockburn; C. W. Shu, ”The Runge-Kutta local projection P 1-discontinuous Galerkin method for scalar conservation laws”, RAIRO Model. Math. Anal. Nu?mer. vol. 25, No. 3, pp. 337-361 (1991).
    [3] B. Cockburn; C. W. Shu, ”TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General frame-work”, Math. Comp. vol. 52, No. 186, pp. 411-435 (1989).
    [4] B. Cockburn; C. W. Shu; S. Y. Lin, ”TVB Runge-Kutta local projection discontin-uous Galerkin finite element method for conservation laws III: One dimensional systems”, J. Comput. Phys. vol. 84, No. 1, pp. 90-113 (1989).
    [5] B. Cockburn; C. W. Shu; S. Hou, ”TVB Runge-Kutta local projection discontin?uous Galerkin finite element method for conservation laws IV: The multidimen?sional case”, Math. Comp. vol. 54, No. 190, pp. 545-581 (1990).
    [6] B. Cockburn; C. W. Shu, ”The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems”, J. Comput. Phys. vol. 141, no. 2, pp. 199-224 (1998).
    [7] C. Johnson, ”Numerical solutions of partial differential equations by the finite element method”, Cambridge University, pp. 14-48 (1987).
    [8] R. J. LeVeque, ”Finite Difference Methods for Differential Equations”, University of Washington, 2006.
    [9] S. Gottlieb; C. W. Shu; E. Tadmor, ”Strong Stability-Preserving High-Order Time Discretization Methods”, Society for Industrial and Applied Mathematics SIAM Review vol. 43, No. 1, pp. 89-112 (2001).
    [10] W. H. Reed; T. R. Hill, ”Triangular Mesh Methods For The Neutron Transport Equation”, University of California, 1973.
    [11] 吳榮昭, ”A High-Order Discontinuous Galerkin Method for Elliptic Interface Prob?lems”,國立成功大學應用數學系研究所碩士論文,民國 98年 7月。
    [12] 馮可安 , ”A Pseudospectral Scheme for Isotropic Elastic Wave Equations in 2-Dimensional Space”,國立成功大學應用數學系研究所碩士論文,民國 96年 6月。

    下載圖示 校內:2012-07-30公開
    校外:2012-07-30公開
    QR CODE