| 研究生: |
劉華軒 Liu, Hua-Hsuan |
|---|---|
| 論文名稱: |
單一動力四足奔跑機器人之研製 Design and Implementation of a Singly Powered Bounding Quadruped Robot |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 四足機器人 、機器人奔跑運動 |
| 外文關鍵詞: | Quadruped Robot, Bounding Gait Control Algorithm |
| 相關次數: | 點閱:54 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要的目的是研製單一動力源的四足奔跑機器人,研究利用一顆直流有刷馬達與自製齒輪箱的搭配,配合機構的設計使機器人能產生足夠的作用力,完成快速奔跑的目標。
實驗首先重點在於研究以及數學模擬驗證MIT Cheetah2的數學模型與控制理論,並且以此作為基礎發展出新的四足機器人,有別於MIT Cheetah2是利用控制馬達產生運動的作用力,本論文設計的四足機器人是利用轉盤和連桿機構使彈簧壓縮與釋放,藉此產生瞬間的作用力。
四足機器人運動時身體姿態會產生變化,本論文利用IMU偵測四足機器人的姿態變化,透過分析可以評估四足機器人在運動的過程中是否處於穩定狀態,也可透過IMU得到四足機器人運動時的其他資訊。
This thesis serves to research and develop a singly powered bounding quadruped robot. The bounding gait control algorithm is used in the robot. The algorithm prescribes vertical impulse generated from the scaled ground reaction forces at each step to achieve the desired stance and total stride.
The robot is composed of a motor, springs, IMU and acrylic sheet. The force is generated by the torsion springs. IMU is used to detecting the robot’s posture, so that it can know whether the quadruped robot is stable or not.
[1]R. McNeill. Alexander, “Principles of animal locomotion,” Princeton University Press, United Kingdom, pp, 103-145, 2002
[2]M. H. Raibert, “Running with symmetry,” Int. Journal of Robotics Research, Vol. 5, No. 4, pp. 3-19, 1986
[3]M. H. Raibert, “Trotting, pacing and bounding by a quadruped robot,” Journal of Biomechanics, Vol. 23, Supplement 1, pp. 79-98, 1990, Int. Soc. of Biomechanics.
[4]Summarizes the BigDog program., (2008/04)
http://www.bostondynamics.com/img/BigDog_IFAC_Apr-8-2008.pdf
[5]S. Seok, “Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot,” IEEE Int. Conf. on Robotics and Automation, pp. 3307-3312, 2013
[6]D. J. Hyun, “High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah,” Int. Journal of Robotics Research, Vol. 33, pp. 1417-1445, 2014
[7]H. W. Park, “Quadruped bounding control with variable duty cycle via vertical impulse scaling,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3245-3252, 2014
[8]H. W. Park, “Variable-speed quadrupedal bounding using impulse planning: untethered high-speed 3D running of MIT Cheetah 2,” IEEE Int. Conf. on Robotics and Automation, pp. 5163-5170, 2015
[9]C. Semini, HyQ-design and development of a Hydraulically actuated quadruped robot, University of Genoa, Italy and Italian Institute of Technology, A thesis submitted for the degree of Doctor of Philosophy, 2010
[10]A. Spröwitz, “Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot,” Int. Journal of Robotics Research, pp. 1-19, 2013
[11]R. McN. Alexander, “The gaits of bipedal and quadrupedal animals,” Int. Journal of Robotics Research, Vol 3, No. 2, pp. 49-59, 1984
[12]Electric Speed Controller, (2016/06)
https://en.wikipedia.org/wiki/Electronic_speed_control
[13]MPU-6500 datasheet, InvenSense Inc., (2013/09)
https://store.invensense.com/datasheets/invensense/MPU_6500_Rev1.0.pdf
[14]PIC18F4550 datasheet, Microchip Technology Inc., (2006)
http://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf
[15]H. H. Lee, “Engineering dynamics labs with SolidWorks motion 2014”, Schroff Development Corp, USA, 2014
[16]W. Bosworth, “The effect of leg impedance on stability and efficiency in quadrupedal trotting,” Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, Sept, 2014.